AZ
 ORSZÁGOS KÖRNYEZETI SUGÁRVÉDELMI
 ELLENŐRZŐ RENDSZER

OKSER
2016. ÉVI JELENTÉSE

Budapest, 2018. június

Tartalomjegyzék

Tartalomjegyzék2
Előszó 5
1 Bevezetés6
1.1 A mérési adatok megjelenítése 6
1.2 Az OKSER tagjai 8
1.3 Az OKSER Szakbizottság tagjainak képviseletét ellátó szakértők 2016-ban8
1.4 A lakossági sugárterhelés forrásainak ismertetése 9
2 Létesítményi kibocsátások, a kibocsátási korlátok 11
2.1 Kibocsátási korlátok származtatása, korlátok az egyes létesítményekre vonatkozóan 11
2.2 A kiemelt létesítmények kibocsátás és környezetellenőrző hálózata 13
2.2.1 A Paksi Atomerőmú kibocsátás és környezetellenőrzỏ hálózata 13
2.2.2 Az NRHT kibocsátás és környezetellenőrző hálózata 14
2.2.3 Az RHFT kibocsátás és környezetellenörző hálózata 15
2.2.4 Az MTA EK Kutatóreaktor kibocsátás és környezetellenőrző hálózata 16
2.2.5 Az Oktatóreaktor kibocsátás és környezetellenőrző hálózata 16
3 A hatósági ellenörzés rendszere 17
3.1 A hatósági ellenőrzést folytató szervezetek bemutatása 17
3.1.1 OKI KI SSFO (OKK OSSKI) 17
3.1.2 Nemzeti Élelmiszerlánc-biztonsági Hivatal 17
3.1.3 Baranya Megyei Kormányhivatal Népegészségügyi Főosztály, Laboratóriumi Osztály, Radiológiai Laboratóriuma18
3.1.4 Egészségügyi Radiológiai Mérő és Adatszolgáltató Hálózat 18
3.2 A hatósági ellenőrzés mérési módszerei 19
f) Takarmány 21
g) Növényi eredetű, nyers élelmiszer 21
h) Gabonafélék és azokból készült termékek 22
i) Tej, tejtermék 22
j) Hús és hústermékek aktivitáskoncentrációi 23
k) Vegyes élelmiszer 23
4 Országos mérési adatok értékelése 24
4.1 A külső gamma-dózisteljesítmény mérések eredményei 24
4.1.1 A Radiológiai Távmérő Hálózat adatai 24
4.1.2 Időszakos külső gamma-dózisteljesítmény mérések 29
4.2 Levegőszűrők (aeroszol) mérési eredményei 30
4.3 Kihullás (fall-out) eredmények 32
4.4 Talaj minták mérési eredményei 34
4.5 Felszíni vizek monitoringja 37
4.6 Ivóvíz 40
4.6.1 Vezetékes ivóvíz és élelmiszeripari technológiai víz 40
4.6.2 Palackozott vizek 44
4.7 Növényzet 45
4.7.1 Takarmány 45
4.7.2 Növényi eredetủ, nyers élelmiszer 49
4.7.3 Gabonafélék és azokból készült termékek 52
4.8 Állati eredetủ élelmiszerek 55
4.8.1 Tej, tejtermék 55
4.8.2 Hús és hústermékek aktivitáskoncentrációi 58
4.9 Vegyes élelmiszer 61
4.10 Egyéb mérések 62
5 Létesítmények környezete 63
5.1 A Paksi Atomerőmü Zrt. környezetében végzett mérések 63
5.1.1 Gamma-dózisteljesítmény mérések a Paksi Atomerőmű környezetében 65
5.1.2 Aeroszol aktivitás-koncentráció mérések a Paksi Atomerőmű környezetében 67
5.1.3 A Paksi Atomerőmű környezet-ellenőrző rendszerének kihullás mérési eredményei 69
5.1.4 A Paksi Atomerömủ hideg és megegvízcsatornájában mért aktivitáskoncentrációk 69
5.1.5 Az OKI KI SSFO mérési adatai Paks felszíni vizekre vonatkozóan 70
5.1.6 A Paksi Atomerőmü környezetében vett halminták mérési eredményei71
5.1.7 A vízi környezetben mért aktivitáskoncentrációk a hatósági mérések alapján 72
5.1.8 A talajban mért aktivitáskoncentrációk 76
5.1.9 A takarmánymintákban mért aktivitáskoncentrációk 78
5.1.10 A növénymintákban mért aktivitáskoncentrációk 79
5.1.11 Ivóvíz és állati eredetü élelmiszerek radioaktivitása 81
5.2 A bátaapáti NRHT telephelyének környezellenőrzési mérési adatai 85
5.2.1 Az NRHT környezetében mért aeroszol-koncentráció adatai 85
5.2.2 Az NRHT környezetében mért kihullás eredmények 86
5.2.3 Az NRHT környezetében vett talajminták mérési eredményei 87
5.2.4 Az NRHT környezetében végzett felszíni víz mérések eredményei 88
5.2.5 Az NRHT környezetében mért növényminták adatai 89
5.3 A püspökszilágyi RHFT környezellenőrzési mérési adatai 90
5.3.1 Az RHFT környezetében mért aeroszol aktivitás-koncentráció adatok 90
5.3.2 Az RHFT környezetében mért kihullás eredmények 91
5.3.3 Az RHFT környezetének talajmérési eredményei 92
5.3.4 Az RHFT környezetében végzett felszíni víz mérések eredményei 94
5.3.5 Az RHFT környezetében mért növényzet adatok 95
5.4 A KFKI telephely környezellenőrzési mérési adatai 96
5.4.1 A KFKI telephelyén mért gammadózis-teljesítmények 96
5.4.2 A KFKI telephelyén mért aeroszol-koncentrációk 97
5.4.3 A KFKI telephely területén mért kihullás eredmények 98
5.5 A BME Oktatórekator telephely környezellenőrzési mérési adatai 98
6 Országhatáron túli hatások 101
6.1 A mohi atomerőmủ kömyezetébe eső hazai területen mért eredmények 101
6.1.1 A mohi atomerömủ magyarországi környezetében mért dózis-teljesítmények ésaktivitáskoncentrációk (OKI Kl SSFO és NÉBIH)101
6.1.2 A mohi atomerőmủ magyarországi környezetében vett fallout minták mérési eredményei (OKI KISSFO) 103
6.1.3 A mohi atomerőmủ magyarországi környezetében vett talajminták mérési eredményei (OKI KISSFO és NÉBIH)104
6.1.4 A mohi atomerőmủ magyarországi környezetében vett füminták mérési eredményei (OKI KI SSFO és NÉBIH) 105
6.1.5 A mohi atomerőmű magyarországi környezetében vett zöldség- és gyümölcsminták mérési eredményei (OKI KI SSFO és NEBIH) 106
6.1.6 A mohi atomerỏmủ magyarországi környezetében vett folyóvíz- és iszapminták mérési eredményei(OKI KI SSFO)107
6.1.7 A mohi atomerőmű magyarországi környezetében vett ivóvízminták mérési eredményei (OKI KISSFO) 108
7 Kibocsátási eredmények 109
7.1 A Paksi Atomerőmű Zrt. 109
7.1.1 Légköri kibocsátás 110
7.1.2 Folyékony kibocsátás 113
7.1.3 Megállapitások 119
7.2 Az NRHT 122
7.2.1 A föld felszini telephely folyékony kibocsátás értékelése 122
7.2.2 A föld felszíni telephely légnemü kibocsátás értékelése 122
7.2.3 A felszín alatti térrész légköri kibocsátásának értékelése 123
7.2.4 A felszín alatti térrész folyékony kibocsátásának értékelése 123
7.2.5 A létesítmény összesített kibocsátásának értékelése 123
7.2.5.1 A telephely felszíni és felszín alatti összesített légköri kibocsátásának értékelése 123
7.2.5.2 A telephely felszíni és felszín alatti összesített folyékony kibocsátásának értékelése 124
7.3 Az RHFT 125
7.3.1 Üzemi épület kibocsátásainak ellenőrzése 125
7.3.2 Tárolóterület folyékony kibocsátásainak ellenőrzése 126
7.3.3 Tárolóterületi gázdiffúzió ellenőrzése 126
7.3.4 Összesített kibocsátások 127
7.4 A Kutatóreaktor 128
7.5 Az Oktatóreaktor 129
7.6 Az Izotóp Intézet Kft. 130
8 Létesítmények hatásának értékelése, a lakossági sugárterhelés járulékai 132
8.1 A Paksi Atomerömű 132
8.1.1 A légköri kibocsátásból származó sugárterhelés 132
8.1.2 A vízi kibocsátásból származó sugárterhelés 135
8.1.3 Az atomerőművi kibocsátások összefoglaló értékelése 136
8.2 Egyéb kiemelt létesítmények 138
Következtetések 139
Irodalom, hivatkozott jogszabályok 140
Adatszolgáltatásban résztvevő intézmények, szakemberek 141
Rövidítések jegyzéke 143

Előszó

Az atomenergiáról szóló 1996. évi CXVI. törvény hatálya kiterjed az atomenergia békés célú alkalmazására, az azzal kapcsolatos jogosultságokra és kötelezettségekre, továbbá az embereknek, valamint az élő és élettelen környezetnek a természetes és mesterséges eredetű ionizáló sugárzás káros hatásai elleni védelmére.

Szintén az emberek természetes és mesterséges eredetű ionizáló sugárzás elleni káros hatásaival szembeni védelem jelenik meg a Tanács 2013/59/EURATOM irányelvében.

Az Európai Atomenergia Közösséget létrehozó szerződés 35. cikke alapján valamennyi uniós tagállam az elmúlt évtizedekben létrehozta a levegő, a viz és a talaj radioaktivitásának állandó figyelemmel kiséréséhez szükséges intézményi feltételrendszert, melynek részletesebb követelményeit az Európai Bizottság 2000/473/EURATOM ajánlása tartalmazza. A hivatkozott nemzetközi kötelezettségekkel és ajánlásokkal összhangban lévõ hazai szabályozás 2016. január elsejével megváltozott. A 275/2002. (XII. 21.) Korm. rendeletet a 489/2015. (XII. 30.) Korm. rendelet (továbbiakban Rendelet) váltotta, mely „A lakosság természetes és az orvosi sugárterhelésen kívüli mesterséges eredetű sugárterhelés meghatározásához szükséges kötelezően mérendő mennyiségekröl, azok központi gyüjtéséröl, feldolgozásáról, kezeléséről és értékeléséről, ellenőrzési rendjéről" rendelkezik.

A korábbi szabályozáshoz képest - a nemzetközi kötelezettségeken núlmutató - változás, hogy a szabályozás kiterjed a külön jogszabályban meghatározott országos nukleárisbalesetelhárítási rendszer (a továbbiakban: ONER) működéséhez szükséges adatok szolgáltatására is.

A Rendelet alapján az Országos Atomenergia Hivatal felügyeletével működő Országos Környezeti Sugárvédelmi Ellenörző Rendszer (OKSER) végzi a lakosság természetes és az orvosi sugárterhelésen kívüli mesterséges eredetủ sugárterhelését meghatározó környezeti sugárzási viszonyok és a környezetben mérhető egyes radionuklidok aktivitáskoncentrációja országos mérési eredményeinek gyűjtését, nyilvántartását és értékelését, valamint a kiemelt létesítmények környezetére vonatkozó sugárvédelmi hatósági ellenőrző programok koordinálását. Az OKSER tagjai a környezeti sugárzás adatgyưjtésében érintett központi államigazgatási szervek és egyéb szakmai szervezetek.

Az OKSER operatív szerve az Országos Atomenergia Hivatal által működtetett Radiológiai Információs és Szolgáltató Központ, melynek alapvető feladata az ország területén mérhetó környezeti sugárzás dózisteljesitmény, a környezet közegeiben, az élelmiszerekben található radioaktív izotópokról, az emberi szervezet radioaktív belső szennyezettségének, valamint a létesítményi kibocsátási adatok gyüjtése, nyilvántartása, és elemzések készitése. Az Országos Közegészségügyi Intézet szakmai támogatást nyújt az OAH részére e feladat ellátásához.

Az előző évi mérési eredményekből az OKSER Szakbizottság minden évben éves jelentést készit.

Jelen kiadvány a 2016. évi mérési eredmények feldolgozását mutatja be.
Budapest, 2018. június 26.

Dr. Rónaky Józzef yaz OKSER Szakbizottság elnöke

1 Bevezetés

1.1 A mérési adatok megjelenítése

Az OKSER 2016. évi jelentése a Radiológiai Információs és Szolgáltató Központ (továbbiakban RISZK) adatbázisába beküldött eredményeken alapul. Egy összefoglaló, éves jelentésben természetesen nem lehet minden egyes adatot szerepeltetni (a 2016. évre vonatkozó mérési eredményeket több mint 74000 rekord tartalmazza). Az eredmények feldolgozásánál, összesítésénél és bemutatásánál a következő főbb szempontokat érvényesítettük:
a) A jelentés szövegében az izotópok jelölését " ${ }^{\mathrm{AAA}} \mathrm{Xy} "$ alakban, a közvetlen számítógépes lekérdezések eredményeként elỏálló táblázatokban és ábrákon a szabványos „AAAXy" alak helyett „XY-AAA" alakban adtuk meg.
b) A mérési eredményeket elsősorban a mintafajták, nagyobb mintacsoportok szerint (pl. talaj, növényzet, állati eredetű élelmiszerek) csoportosítottuk. Ezeken belül azonban indokolt esetben - alcsoportokat (pl. takarmány, növényi eredetű nyers élelmiszer, feldolgozott növényi eredetű élelmiszer) képeztünk.
c) Lehetőség szerint törekedtünk az ún. nuklidspecifikus eredmények bemutatására, azonban nem hagyhattuk el a mérési programok jelentős részét képviselỏ - inkább indikátor jellegủ mennyiségnek tekinthető - összes béta-aktivitási ${ }^{1}$ és összes alfaaktivitási ${ }^{2}$ adatokat sem.
d) A környezeti gamma-dózisteljesítmény adatokat egyes laboratóriumok Gy, más laboratóriumok Sv egységben közlik, a jelentésben egységesen Sv szerepel.
e) A b) pontnak megfelelően az országos ellenőrzési eredmények alapvető megjelenítési formái az éves átlagok, valamint egyéb statisztikai jellemzőket bemutató térképek és táblázatok. Tekintettel arra, hogy a mintavételi programok általában megyei szintig lebontottak - kivétel a gamma-dózisteljesítmény és a felszíni vizek ellenőrzése - a feldolgozás térbeli felbontása is ennek megfelelỏ. A létesítményekhez kötött ellenőrzési programok eredményeinek bemutatásánál - ahol a hatások kimutatása a fö cél - az időbeli változások megjelenítésére törekedtünk.
f) A létesítmények ellenőrzési eredményeinél a telephelyet és annak környezetét általában jellemző adatsorokat választottunk.
g) A jelentés táblázataiban a „kimutatási határ alatti" esetek jelzésére a „Kha" rövidítést használtuk. Megjegyezzük, hogy a kimutatási határ ugyanazon mintafajta és izotóp esetén is laboratóriumonként eltérő lehet.

[^0]h) Az alkalmazott érzékeny technikák, eszközök ellenére a mérések több mintafajtánál is nagy számban kimutatási határ alatti eredményeket szolgáltattak. A kimutatási határ feletti és alatti eredmények megfelelő statisztikai kezelésére a táblázatos összefoglalásokban a következő módszert alkalmaztuk:

- átlagot és szórást csak abban az esetben képeztünk, ha a kimutatási határ feletti eredmények száma legalább tíz volt (ekkor a kimutatási határ alatti eredményeket a kimutatási határ értékével vettük figyelembe); azonban az országos táblázatokban az országos összesitéseknél (a táblázatok alsó soraiban) ekkor sem adtuk meg a szórást, csak a megyei eredményeknél.
- csak a minimum és maximum értékeket adtuk meg, ha a kimutatási határ feletti eredmények száma 2 és 10 közötti volt;
- csak a maximum értéket szerepeltettük - megállapodás szerint -, ha csupán 1 kimutatási határ feletti eredmény volt;
- végül nem közöltünk eredményt, ha minden adat kimutatási határ alatti volt;
- az eredmények összesített számán kívül minden esetben feltüntettük a kimutatási határ alattiak számát is.
i) A térképeknél - az egységes megjelenítés érdekében - mindenütt a maximum értékeket tüntettük fel.

Az egyedi mérési eredmények bizonytalanságáról elmondható, hogy a mérések relatív hibája általában nem haladja meg a 10%-ot. Nagyobb és nehezen, vagy egyáltalán nem számszerűsíthetỏ bizonytalanságot eredményez a mintavétel olyan környezeti mintáknál, ahol jelentős mértékű inhomogenitás fordulhat elő (pl. a csernobili atomerőmủ balesetből származó ${ }^{137} \mathrm{Cs}$ aktivitáskoncentrációja a talajban).

Kiegészítésként megjegyezzük, hogy a jelentésben szereplỏ adatoknál több tekintetben részletesebb, elemzőbb összefoglalókat találhatunk egyes tárcák mérőhálózatainak tevékenységéről, illetve egyes létesítmények környezet-ellenőrzéséről szóló cikkekben, jelentésekben.

1.2 Az OKSER tagjai

Az OKSER tagjai (a 489/2015. (XII. 30.) Korm. rendelet 1. sz. melléklete alapján)

1. a katasztrófák elleni védekezésért felelős miniszter által vezetett minisztérium
2. az egészségügyért felelős miniszter által vezetett minisztérium
3. a környezetvédelemért felelős miniszter által vezetett minisztérium
4. az agrárpolitikáért felelős miniszter által vezetett minisztérium
5. az élelmiszerlánc-felügyeletért felelős miniszter által vezetett minisztérium
6. az oktatásért felelös miniszter által vezetett minisztérium
7. a honvédelemért felelős miniszter által vezetett minisztérium
8. a közigazgatás-szervezésért felelős miniszter által vezetett minisztérium
9. az Országos Meteorológiai Szolgálat
10. a Magyar Tudományos Akadémia
11. az Országos Atomenergia Hivatal
12. az MVM Paksi Atomerőmű Zrt.
13. a Radioaktív Hulladékokat Kezelő Közhasznú Nonprofit Kft.
14. a Mecsekérc Zártkörűen Működő Részvénytársaság
15. az Országos Közegészségügyi Intézet.

1.3 Az OKSER Szakbizottság tagjainak képviseletét ellátó szakértők 2016-ban

1. Szeitz Anita (Belügyminisztérium, Országos Katasztrófavédelmi Főigazgatóság - BM OKF)
2. Dr. Pellet Sándor (Emberi Erőforrások Minisztériuma - Egészségügyi Ágazat)
3. Dr. Dobi Bálint (Földművelésügyi Minisztérium - Környezetvédelmi és Vízügyi Ágazat)
4. Ádámné Sió Tünde (Földművelésügyi Minisztérium - Földművelésügyi Ágazat)
5. Cservenák Ildikó (Emberi Erőforrások Minisztériuma - Oktatási Ágazat)
6. Farkas Ferenc ezredes (Honvédelmi Minisztérium - MH GAVIK)
7. Nagy József (Országos Meteorológiai Szolgálat)
8. Dr. Zagyvai Péter (Magyar Tudományos Akadémia - Energiatudományi Kutatóközpont)
9. Kapitány Sándor (Országos Atomenergia Hivatal)
10. Dr. Bujtás Tibor (MVM Paksi Atomerőmű Zrt.)
11. Dr. Radó Krisztián (Radioaktív Hulladékokat Kezelő Közhasznú Nonprofit Kft)
12. Molnár Éva (a Mecsekérc Zártkörủen Müködő Részvénytársaság)
13. Fülöp Nándor (Országos Közegészségügyi Intézet KI SSFO)
14. Dr. Rónaky József (az OKSER Szakbizottság elnöke)

1.4 A lakossági sugárterhelés forrásainak ismertetése

A lakosságot folyamatosan éri ionizáló sugárzás, mivel az ionizáló sugárzást létrehozó anyagok jelen vannak a környezetünkben, mind az élőlényekben, mind természetes illetve mestergséges eredetủ élettelen anyagokban is.

Az emberiséget érő sugárzásokat többféleképpen csoportosíthatjuk. A sugárzás eredete alapján megkülönböztetünk természetes és mesterséges eredetủ sugárforrásokat. A sugárzás forrása és a sugárhatást elszenvedỏ egyén relatív elhelyezkedése alapján pedig megkülönböztetünk külső és belső sugárforrásokat. Amennyiben a sugárforrás a szervezetünkön kívül helyezkedik el, külső sugárforrásról beszélünk. Amennyiben egy radionuklid táplálkozás vagy légzés (esetleg sérülés) során bejut a szervezetbe, és ott hosszabb-rövidebb ideig megkötődik, belső sugárforrásról beszélünk.

A természetes eredetủ sugárzás két fő forrása az ưr és a földkéreg.
Az ûrből a Föld légkörébe érkezỏ nagy energiájú részecske sugárzások az elsődleges kozmikus sugárzások (kozmikus sugárzás és a kozmogén radionuklidok.) Egy részét a Föld mágneses tere eltéríti, melynek mértéke a földrajzi szélességtől illetve a naptevékenység keltette mágneses terek változásától függ. Eredetük szerint megkülönböztethető galaktikus és szoláris kozmikus sugárzás. A kozmikus sugárzás értéke magasság és földrajzi szélesség függő.

A földkéreg tekintetében a kozmogén radionuklidokon kívül ma már csak azok a radioizotópok (valamint bomlástermékeik) találhatók meg a Földön, (a mesterségesen előállitottakat nem számítva) melyeknek felezési ideje összemérhető a Föld korával. Ezeket szokás nevezni földkérgi vagy terresztriális eredetű radionuklidoknak is. A dózisterhelés szempontjából az alapvető primordiális radionuklidok a ${ }^{40} \mathrm{~K},{ }^{232} \mathrm{Th}$ és ${ }^{238} \mathrm{U}$.
Mivel a természetes sugárterhelés több mint a fele (hazánkban átlagosan $1,26 \mathrm{mSv} /$ év) az urán bomlási lánc részét képező, gáznemủ ${ }^{222} \mathrm{Rn}$-tól és annak leányelemeitől származik, ez az izotóp külön figyelmet érdemel. Szabadban gyorsan felhígul, de zárt terekben (lakások, munkahelyek) feldúsulhat. [5]

Mesterséges eredetű, az ember által előállított ionizáló sugárforrásoktól származó hatások a röntgen sugárzás felfedezésétől, azaz 1895-töl érik az emberiséget. [5]

Az UNSCEAR 2016-os Radiation Effects and Sources kiadványa szerint a felnőtt lakosság természetes és mesterséges forrásból várható éves effektív dózis átlagértéke körülbelül 3 mSv . A természetes forrásból származó éves effektív dózis körülbelül $2,4 \mathrm{mSv}$, ebből a legnagyobb járulékot a radon és leányelemei jelentik $1,3 \mathrm{mSv}$-es értékkel, a talaj okozta sugárterhelés körülbelül $0,48 \mathrm{mSv}$, a kozmikus sugárzás körülbelül $0,39 \mathrm{mSv}$ többletdózist eredményez. A mesterséges forrásból származó éves effektív dózis értéke körülbelül $0,65 \mathrm{mSv}$. A mesterséges eredetủ sugárzás forrásai: radioaktív hulladékok, nukleárisfegyver kísérletek, radioizotópok előállitása, felhasználása, orvosi alkalmazások, sugár és nukleáris balesetek, működő atomerőművek - beleértve az egész nukleáris fűtőanyag ciklust. A mesterséges sugárterhelés esetében a legnagyobb hozzájárulást az orvosi terület képviseli $0,62 \mathrm{mSv}$ éves többlet dózissal. [11]

Hazánk lakosságának természetes sugárterhelése körülbelül szintén $3 \mathrm{mSv} /$ év, mivel azon országok közé tartozunk, amelyek lakói viszonylag több időt töltenek épületben.

A természetes sugárterhelésünk legnagyobb része - mintegy fele - két-harmada a felszíni kőzetekben, talajokban és az építőanyagokban bizonyos koncentrációban mindig jelen lévő urán bomlásakor felszabaduló radongáz és egyéb légnemủ radioaktív anyagok belégzéséből ered.

Mesterséges eredetű sugárterhelést okozhatnak hazánkban az orvosi eredetű sugárterheléseken kívül az alábbi létesítmények:

- A kiemelt létesítmények:
- MVM Paksi Atomerőmű Zrt. Paksi Atomerőmű
- BME Nukleáris Technikai Intézet Oktatóreaktor
- RHK Kft. Kiégett Kazetták Átmeneti Tárolója
- MTA Energiatudományi Kutatóközpont Kutatóreaktor
- Izotópgyártó A-típusú laboratórium, Izotóp Intézet Kft.
- RHK Kft. Radioaktív Hulladék Feldolgozó és Tároló
- RHK Kft. Nemzeti Radioaktívhulladék-tároló
- A radioaktív anyagot alkalmazó munkahelyek
- Ionizáló sugárzást létrehozó berendezéseket alkalmazó munkahelyek
- A külföldi atomerőművek, melyek potenciális veszélyforrást jelenthetnek:
- Mochovce VVER 2*440 (Salgótarján É 50 km) - további 2 épül
- Bohunice VVER 2*440 (Komárom É 110 km) - további 2 lebontás alatt
- Krskó PWR 664 (Lenti DNY 120 km)
- Dukovani VVER 4*500 (Hegyeshalom ÉNy 160 km)
- Temelin VVER 2*1000 (Hegyeshalom ÉNy 280 km)

A 489/2015. Korm. rendelet hatálya, így az OKSER jelentés tartalma sem terjed ki a lakosság természetes és az orvosi eredetű sugárterhelésének meghatározására.

A lakossági sugárterhelés mesterséges forrásból származó járulékainak számítása során elsôsorban a kiemelt létesítmények radioaktív kibocsátásait, környezetellenőrzési eredményeit kell figyelembe venni és megállapítani, hogy mely létesítmény milyen többletdózissal járul hozzá a lakosság sugárterheléséhez.

2 Létesítményi kibocsátások, a kibocsátási korlátok

2.1 Kibocsátási korlátok származtatása, korlátok az egyes létesítményekre vonatkozóan

A 15/2001. (VI. 6.) KöM rendelet (továbbiakban KöM rendelet) az atomenergia alkalmazása során a levegöbe és vizbe történő radioaktív kibocsátásokról és azok ellenőrzéséről rendelkezik az atomenergia alkalmazása során a radioaktív anyagoknak a levegőbe és vízbe történő kibocsátásáról, a vizek és viztartó képződmények radioaktív és hőszennyezés elleni védelméről, a levegő és a vízi környezet radioaktív szennyeződése ellenőrzéséről, az e tevékenységeket végzőkre vonatkozóan állapít meg elöirásokat.

Annak érdekében, hogy egy adott tevékenységből származó, adott és ellenőrzés alatt tartott forrásból eredő foglalkozási vagy a lakosság tagjaira vonatkozó sugárterhelés az ésszerűen elérhető legalacsonyabb szintet jelentősen ne haladja meg, a forrásra vonatkozóan dózismegszorítást kell alkalmazni. A lakossági sugárterhelésre vonatkozó dózismegszorítást az engedélyes javaslata alapján illetékes hatóságként 2016 előtt az Országos Tisztifőorvosi Hivatal engedélyezte, 2016. január 1-jétől az Országos Atomenergia Hivatal engedélyezi. A dózismegszorítást a lakosságot érintő valamennyi engedélyezett tevékenységbỏl és fennálló sugárzási helyzetből eredỏ dózisok összegére vonatkozó dóziskorlát figyelembe vételével kell megállapítani. A dózismegszorítás - a létesítmények jellegének megfelelően - a Paksi Atomerőmủ esetében $90 \mu \mathrm{~Sv} /$ év, a Kiégett Kazetták Átmeneti Tárolója részére $10 \mu \mathrm{~Sv} / \mathrm{év}$, a püspökszilágyi Radioaktív Hulladék Feldolgozó és Tároló, valamint a bátaapáti Nemzeti Radioaktí́vhulladék-tároló részére $100 \mu \mathrm{~Sv}$ /év, a Budapesti Kutatóreaktorra $50 \mu \mathrm{~Sv} /$ év, az Oktatóreaktorra 50μ Sv/év és a bezárt uránbánya területének helyreállítására $300 \mu \mathrm{~Sv}$ /év.

A KöM rendelet szerint a a kiemelt létesítmények radioaktív kibocsátásaira vonatkozó éves kibocsátási határértékeit a dózismegszorításból kiindulva kell származtatni. A határértékek származtatását a rendelet 1. számú mellékletében foglalt szempontok figyelembevételével kell elvégezni úgy, hogy a kibocsátási határérték betartása, illetve a kibocsátási határérték kritérium teljesülése esetén a lakosság éves sugárterhelése ne haladja meg a dózismegszorítást. A kibocsátási határértéket minden kibocsátási, továbbá minden olyan radionuklidra vagy azok csoportjaira származtatni kell, amelyek kibocsátásra kerülhetnek. Egyéb létesítmények radioaktív kibocsátásaira alapértelmezés szerint a KöM rendelet 2. számú mellékletében foglalt, jogszabályban rögzített éves kibocsátási határértékek érvényesek, melytől csak a kiemelt létesítményekre vonatkozó módszertan szerint meghatározott, külön eljárásban kiadott engedély alapján térhet el.

A KöM rendelet definiálja a kibocsátási kivizsgálási kritérium fogalmát. Ennek lényege, hogy normál üzemi körülmények között a kibocsátás mértéke - több radionuklid kibocsátása és/vagy több kibocsátási mód esetén az egyes kibocsátások összege - nem haladhatja meg a kibocsátási határérték - több radionuklid kibocsátása és/vagy több kibocsátási mód esetén a hozzájuk tartozó kibocsátási határértékek - 30%-át. Tehát a lakosságot érő sugárterhelés a dózismegszorítás harmadánál is alacsonyabb normál üzemi kibocsátások esetén.

A KöM rendelet szerint az engedélyes a kibocsátások és a környezet ellenőrzését az I. fokú környezetvédelmi hatóság által jóváhagyott Kibocsátásellenőrzési illetve Környezetellenőrzési Szabályzatok alapján köteles végezni.

A KöM rendeletben foglalt hatósági felügyeletet elsőfokú környezetvédelmi hatóságként a környezetvédelmi és természetvédelmi hatáskörben eljáró Baranya Megyei Kormányhivatal Pécsi Járási Hivatala, valamint a Baranya Megyei Kormányhivatal Népegészségügyi Főosztály Laboratóriumi Osztály Környezetvédelmi Mérőközpontjának Radiológiai Laboratóriuma (a továbbiakban: BAMKH NF LO) látja el. A helyszíni hatósági ellenőrzéseket a Pécsi Járási Hivatal és a BAMKH NF LO közösen látja el.

A 489/2015. (XII. 30.) Korm. rendelet rendelkezése szerint az OKSER feladata a kiemelt létesítmények környezetében kialakult sugárzási helyzet hatósági értékelése. [4]

2.2 A kiemelt létesítmények kibocsátás és környezetellenőrző hálózata

2.2.1 A Paksi Atomerőmű kibocsátás és környezetellenőrző hálózata

A radioaktív anyagok kibocsátásának, valamint a környezet radioaktív terhelésének ellenőrzése céljából a Paksi Atomerőmű egy széleskörűen kiépített üzemi kibocsátás- és környezeti sugárvédelmi ellenőrző rendszert üzemeltet. A rendszert egyrészt távmérő hálózatok, másrészt laboratóriumi mintavételes vizsgálatok alkotják. A környezetellenőrzés távmérő rendszerei: A telepített kibocsátás és környezeti sugárvédelmi ellenőrző rendszer (KKSER) egy szűkebb részét a környezeti A és B típusú levegőmonitoring távmérő állomások hálózata, a G típusú dózisteljesítményt mérő állomások hálózata, a V típusú vízmintavételeket ellátó állomások hálózata továbbá a meteorológiai adatokat szolgáltató berendezések - röviden környezetellenőrzỏ hálózat - képezi.

A környezetellenőrző hálózat érzékelői több, mint 130 különböző sugárzási és meteorológiai paraméterről szolgáltatnak folyamatosan, 10 perces mérési időciklusokban információt, melyek jelkábelen és/vagy rádiótelefonon keresztül egy számítógépes adatgyűjtỏ és feldolgozó egységekbe kerülnek. Innen a sugárázási adatok a különböző technológiai vezénylők megjelenítőin követhetőek nyomon. Határérték túllépéskor a vezénylökben fényés hangjelzés hívja fel a figyelmet az adott mérőcsatorna jelzésére. A távmérő állomások aktív és passzív mintavevő egységekkel is fel vannak szerelve, melyek folyamatos mintavételt végeznek a különböző környezeti közegekből laboratóriumi vizsgálatok céljára. A környezet mintavételes ellenőrzése a környezeti mintákban lévő radioaktív izotópok aktivitáskoncentrációjára, valamint a környezeti gamma-sugárzás dózisára vonatkozó vizsgálatoknak az a célja, hogy közvetlen mérési adatokat kapjanak az erőműből kibocsátott radioaktív izotópok által létrehozott környezetterhelésre. Az érzékeny, nuklidspecifikus laboratóriumi vizsgálatok egyben kiegészítik, pontosabbá teszik a távmérések útján kapott képet. Az ellenőrzés főleg az elsődleges környezeti közegekre - a légköri eredetủ, a talajfelszíni, a felszíni víz és a talajvíz mintákra - terjed ki. A minták túlnyomó része az erőmủ $1,5-3 \mathrm{~km}$-es, néhányé a 30 km -es (14 db környezeti dózist mérő C típusú állomás) sugarú körzetéből származik. A dunaföldvári B (vagy B24) állomást kontroll állomásnak tekintik. A legfontosabb mintákat a távmérő és mintavevő állomások folyamatos üzemủ aktív mintavevői szolgáltatják (aeroszol, jód, illetve víz minták). A táplálék-féleségek közül a normálüzemi ellenőrzés a füre, a tejre és a halra korlátozódik. Az erőmű normál üzemelése mellett a környezeti minták gyűjtése (a mintacserék végzése) elöre meghatározott program szerint történik. A mintákat a Környezetellenőrző Laborban dolgozzák fel és mérik meg aktivitáskoncentrációjukat. A mérési eredményekről a laboratórium vizsgálati jegyzőkönyvet, heti, havi és éves jelentést készít, melyeket az érintett hatóságoknak rendszeresen megküldenek. Évente legalább 4000 különböző minta vizsgálatára kerül sor, a mérési eredmények száma pedig - a nuklidspecifikus vizsgálatoknak köszönhetően - 10000 körül mozog. [8]

2.2.2 Az NRHT kibocsátás és környezetellenőrző hálózata

A környezeti sugárvédelmi (radiológiai) ellenőrzés célja, hogy folyamatos mintázással és méréssel megfigyelje a tároló környezetében a sugárzási helyzetben (aktivitásszint, gammadózisteljesítmény) beálló változásokat, tendenciákat. A radiológiai környezetterhelést vizsgáló rendszert alkotó monitor-elemek két csoportba oszthatók: a környezet-ellenőrzési, ill. a kibocsátást ellenőrző csoportba. Bár feladatukat te-kintve vannak olyan monitor-elemek, amelyek mindkét funkciót ellátják, de a két csoport objektumai térben is elkülönülnek. Az első a telephely tágabb (néhány km-re lévő) térségében helyezkedik el, míg a másodikba a kibocsátás detektálására a telephelyen vagy annak közvetlen közelében lévő észlelési, mintázási helyszínek tartoznak.

A kibocsátások sugárvédelmi ellenőrzése rögzített mintavételi helyeken történik. A légköri kibocsátások ellenőrzésére három kibocsátásellenőrzési pont, a vízkörrnyezeti kibocsátásokra szintén kettő (+egy) pont szolgál. Folyamatos dózisteljesítmény mérés mellett, aeroszol-, és légköri trcium és radiokarbon, mintavétel majd kiértékelés szolgálja a kibocsátás folyamatos ellenőrzését.

A létesítmény sajátosságait és a helyszíni viszonyokat figyelembe véve öt környezeti monitoring állomás létesült. Ezeken az állomásokon folyamatos környezeti-dózisteljesítmény mérés mellett, aeroszol-, kihullás, és légköri trcium és radiokarbon, valamint talaj és növény mintavétel történik. Az NRHT telephelyén környezeti laboratórium működik, ahol a környezeti minták hagyományos gamma és összes béta-vizsgálatait illetve ezek előkészítési munkáit végzik. A nehezen mérhetỏ izotópok mérési feladatainak ellátásához illetve a kapcsolódó technológiai rendszerek karbantartási feladataira külsỏ vállalkozóval nyilt közbeszerzési pályázat útján szerződést kötöttek.

A hagyományos környezetellenőrző monitoring keretébe tartozik a meteorológiai paraméterek mérése, a levegőben lévő szennyező anyagok (por, nitrogén-dioxid stb.) kimutatása, a mederüledékekben lévő (a tágabb környezetből származó) és az NRHT-ba vezetỏ út mentén a közlekedési eredetủ toxikus nyomelemek megfigyelése, valamint a zajterhelés mérése. A kibocsátások sugárvédelmi ellenőrzése rögzített mintavételi helyeken történik. A létesítményből csak tervezett és ellenőrzött módon, gyűjtőtartályokból kerülnek vizek kibocsátására. A légköri kibocsátások ellenőrzésére három kibocsátásellenőrzési pont szolgál.

A monitoring elemek utolsó csoportjába a földtani (geotechnikai), vízföldtani monitoring elemek tartoznak, melyek a felszín alatti térségek és a földtani gát állapotának folyamatos ellenőrzését teszik lehetővé. [7]

2.2.3 Az RHFT kibocsátás és környezetellenőrző hálózata

Az RHFT környezeti megfigyelő rendszerének célja, hogy a radioaktív hulladékok kezelésének és tárolásának környezeti hatásait, illetve a munkavégzés közben keletkezett esetleges szennyeződéseket időben feltárja. A mintavételezés a telephely teljes területét, felszíni vízfolyások esetében pedig a 20 km -es körzetét érinti.

A püspökszilágyi RHFT környezeti kibocsátásait és környezetellenőrzésének rendszerét a hivatalos üzemviteli dokumentumok részeként kiadott, az illetékes hatóságok által jóváhagyott kibocsátás ellenőrzési szabályzat, környezetellenőrzési szabályzat, valamint a Komplex Monitoring Terv határozza meg. Az RHFT területén légköri vagy folyékony (elsősorban csapadékvíz) radioaktív kibocsátásokra üzemszerủen csak az ellenőrzött zónában elhelyezkedő üzemi épületből és a tárolóterületről kerülhet sor. A légnemủ kibocsátás ellenőrzése egy, az üzemi épület szellőző rendszerének a kéményébe telepitett mintavevővel történik. A tárolóterület és az üzemi épület kibocsátását az uralkodó szélirányba telepitett folyamatos üzemű monitorok is ellenőrzik. A tároló üzembe helyezése előtt meghatározták a tároló környezetének leglényegesebb pontjain (a környező vízfolyások mentén és a talajvízben) az úgynevezett alapszintet, a működés előtti sugárzási háttérértékeket. Az ellenőrző mérések eredményeit ezekhez az 1976-77-ben meghatározott adatokhoz is viszonyítják. Az RHFT radiológiai környezetellenőrzési tevékenysége több laboratórium munkáján alapul. Az RHFT saját környezeti laboratóriuma végzi az alapvető, legszükségesebb méréseket. A szerződéses partnerek hajtják végre a speciális méréseket, a nehezen detektálható izotópok kimutatását a környezeti mintákban. A telephely környezetellenőrzỏ laboratóriuma jellemzően 40 különböző mintavételi helyről gyűjt rendszeresen növény, talaj, üledék/iszap, aeroszol, kihullás, állati eredetủ, felszíni víz illetve talajvíz mintákat gamma-spektrometria és összes béta számlálás céljából. A telephely környezetéből éves szinten mintegy 600 mintát (aeroszol, növény, talaj, hal, felszíni és talajvíz) vesznek. A tároló környezetében mérhető radiológiai jellemzők helyi nyilvántartásba, valamint az OKSER országos szintü számítógépes nyilvántartásába kerülnek. [7]

2.2.4 Az MTA EK Kutatóreaktor kibocsátás és környezetellenőrzõ hálózata

A környezeti sugárzási szintek folyamatos monitorozása a mintegy $2 \mathrm{~km}^{2}$ kiterjedésủ telephelyen kihelyezett 18 (közülük 2 detektorpár, egy-egy közlekedési út két oldalán) GM szondával történik. A dózisteljesítmény folyamatos mérése mellett a telephelyen 4 környezetmonitorozó mérőállomás található, valamint 1 úgynevezett „Paksi Referencia Állomás", ez a PAE körül telepitett „A" típusú mérőállomásokkal azonos felépítésű. Ebben is üzemel dózisteljesítmény-mérő. A további mérési módszerek és az éves mintaszámok az alábbiak:
aeroszol-mintavétel, szakaszos kiértékelés összesbéta-számlálással, 3 nạpos pihentetés után: 4 állomás, éves mintaszámok 50, 247, 358, 250.
elemi jód mintavétel, szakaszos kiértékelés gamma-spektrometriával: 1 állomás, éves mintaszám 52.
elemi jód mintavétel, szakaszos kiértékelés gamma-spektrometriával: 1 állomás, éves mintaszám 51.
folyamatos aeroszol- és elemi jód ellenőrzés összesbéta-számlálással az „A" állomáson. Ugyanott szakaszos aeroszol-mintavétel, kiértékelés gamma-spektrometriával, éves mintaszám 52.
aeroszol, elemi jód és szerves jód szakaszos kiértékelés gamma-spektrometriával az „A" állomáson vett mintával; éves mintaszám 52 .
nedves és száraz kihullás egyesített mintavétele 4 állomáson, kiértékelés gammaspektrometriával, éves mintaszám: 3×12 (havi) +52 (heti), összesen 88 .

A szennyvízkibocsátás ellenőrzése a telekhatár közelében elhelyezkedő vízmintavevő állomáson történik, ahol napi mintavétel és folyamatos aktivitásmérés történik. Tríciummérés a kimenő szennyvízből vett mintából hetente egyszer, éves mintaszám: 52. Szakaszos mintamérés a akimenỏ szennyvízből vett mintából összesbéta-számlálással, éves mintaszám: 245.

A tevékenység részletes leírását lásd [10]

2.2.5 Az Oktatóreaktor kibocsátás és környezetellenőrző hálózata

A reaktorépület több pontján gamma-és neutron-detektorok folyamatosan mérik a dózisteljesítményt, emellett a levegő aktivitását, a primerkörben, valamint a hulladékvízkezelő rendszerben lévő víz aktivitását is folyamatosan monitorozzák és archiválják. Az ellenőrzés főbb elemei a következők:

Kibocsátás mérése: a kibocsátott levegőben GM-csöves folyamatos dózisteljesítménymérés és annak aeroszol-tartalmához kötődő radioaktivitás szakaszos mérése összesbéta-számlálással havonta egyszer.

Környezeti ellenőrző mérések: gamma-dózisteljesítmény folyamatos mérése két RS-04 típusú széles méréshatárú dózisteljesítménymérővel a bejáratnál és a reaktorépület melletti kertben, aeroszol-mintavétel hetente 3 -szor (éves mintaszám 150), összesbéta- és összesgamma-mérés szakaszosan, a rövid felezési idejủ radon-leányelemek lebomlása után; a száraz és nedves kihullás meghatározása szakaszos mintavétellel havonta egyszer összesbétaszámlálással (éves mintaszám 12), a talajra és a növényzetre kiülepedett, illetve a növényzet által felszívott radioaktivitás mérése évente kétszer gamma-spektrometriával, valamint a Duna vizében megjelenő radioaktivitás monitorozása összesbéta-számlálással illetve gammaspektrometriával kéthetente (éves mintaszám 26). [9]

3 A hatósági ellenőrzés rendszere

3.1 A hatósági ellenőrzést folytató szervezetek bemutatása

3.1.1 OKI KI SSFO (OKK OSSKI)

A fővárosi és megyei kormányhivatal, valamint a járási (fővárosi kerületi) hivatal népegészségügyi feladatai ellátásáról, továbbá az egészségügyi államigazgatási szerv kijelöléséről szóló 385/2016. (XII. 2.) Korm. rendelet szabályozza többek között az Országos Közegészségügyi Intézet Környezetegészségügyi Igazgatóság, Sugárbiológiai és Sugáregészségügyi Főosztály (OKI KI SSFO) munkáját.

Az Országos Közegészségügyi Intézet akkreditált Sugáregészségügyi Vizsgáló Laboratóriuma vizsgálja és méri a lakossági, foglalkozási, orvosi, civilizációs és környezeti sugárterhelést és ésszerủ csökkentésének lehetőségeit, vizsgálja és nyomon követi a természetben található radioaktív anyagok felhasználását, továbbá azok bedúsulását eredményező ipari folyamatokat; ellenőrző méréseket végez a felszíni vizek magyarországi szakaszain, ha azok lakossági ivóvízként vagy az élelmiszergyártás során technológiai vízként kerülnek hasznosításra, nyomon követi a szabadban a természetes külső sugárterhelés alakulását és ennek érdekében a Paksi Atomerőmű környezetében környezeti termolumineszcens dozimetriai hálózatot müködtet.

3.1.2 Nemzeti Élelmiszerlánc-biztonsági Hivatal

A Nemzeti Élelmiszerlánc-biztonsági Hivatal (NÉBIH) 2012. március 15-én alakult meg. A hivatal a Földművelésügyi Minisztérium hátérintézményeként országos hatáskörben felügyeli az élelmiszerlánc-biztonsági szabályok betartását.A radioanalítikai vizsgálatokat az Élelmiszer- és Takarmánybiztonsági Igazgatóság akkreditált laboratóriumai végzik:

Radioanalitikai Referencia Laboratórium: A laboratórium feladata a hazai és import élelmiszereken, takarmányokon kívül, a mezőgazdasági tevékenységgel és erdőgazdálkodással összefüggő területről származó minták radioanalitikai ellenőrzése. Az akkreditált vizsgálatok kiterjednek a félvezető detektoros és szcintillációs gammaspekrtommetrián kívül kémiai előkészítést igénylő alfa és béta-sugárzó izotópok maghatározására folyadékszcintillációs, alfa-spektrometriás méréstechnikával, vagy alacsony hátterủ bétaszámlálással. A laboratórium részt vesz a nukleáris létesítmények környezetellenőrzésében, a környezetellenörző minták mintavételében, és terepi mérésekben. Elvégzi a nukleáris-balesetelháritással kapcsolatban rá háruló feladatokat, kapcsolatot tart fenn a feladat végrehajtásában érintett szervezetekkel. Körvizsgálatokat szervez radioanalitikai témakörben hazai és nemzetközi érdeklődők számára. Kapcsolatot tart fenn a Nemzetközi Atomenergia Ügynökséggel (IAEA), melynek keretében részt vesz az ALMERA (Analytical Laboratories for Measurement of Environmental Radioactivity) hálózat munkájában, az IAEA által delegált külföldi ösztöndíjasok képzésében.

Élelmiszerlánc Radioanalitikai Laboratórium szekszárdi és szombathelyi telephely: Mezőgazdasági tevékenységgel és erdőgazdálkodással összefüggő mintákból, élelmiszerekből, takarmányokból radioanalitikai vizsgálatokat végez, mint pl.: összes alfa és béta sugárzás mérés, alfa és gammaspektrometriával nuklidszelektív radioaktív izotóp meghatározás és radiostroncium elválasztást és mérést).

A NÉBIH Regionális Élelmiszerlánc Laboratóriumai (RÉL) közül a Debreceni RÉL, Kecskeméti RÉL, Kaposvári RÉL, Miskolci RÉL és a Debreceni RÉL végez radioanalitikai vizsgálatokat: Mezőgazdasági tevékenységgel és erdőgazdálkodással összefüggő mintákból,
élelmiszerekből takarmányokból összes béta sugárzás mérést, gammaspektrometriával nuklidszelektív radioaktív izotóp meghatározást, és radiostroncium elválasztást és mérést minen laboratórium, összes alfa-vizsgálatot két laboratórium végez jelenleg.)

3.1.3 Baranya Megyei Kormányhivatal Népegészségügyi Főosztály, Laboratóriumi Osztály, Radiológiai Laboratóriuma

A laboratórium Magyarország kiemelt létesítményeinek kibocsátás- és környezetellenőrzésére kiterjedően országos illetékességi, környezetvédelmi hatósági laboratórium szerepét tölti be. Mintavételi és mérési programját az atomenregia alkalmazása során a levegőbe és vizbe történő radioaktív kibocsátásokról és azok ellenőrzéséről szóló 15/2001. KöM rendelet 6. számú melléklete alapján dolgozza ki és végzi.

A fenti rendeletben foglaltak szerint részt vesz a kiemelt létesítmények negyedéves, éves hatósági ellenőrzésében.

A környezetellenőrzési feladatait a következő jogszabály szerint látja el. A 71/2015. (III. 30.) Korm. rendelet a környezetvédelmi és természetvédelmi hatósági és igazgatási feladatokat ellátó szervek kijelöléséről szóló rendelet 4. melléklet 1.2.3 pontja értelmében a radiológiai vizsgálatokat valamennyi környezeti elem vonatkozásában országos illetékességi területtel a Baranya Megyei Kormányhivatal végzi.

Vizsgáló laboratóriumként részt vesz a nemzetközi vízvédelmi Határvizi Egyezményekben meghatározott radiológiai mintavételezésében és mérésben. Munkatársai a szakértői és albizottsági üléseken szakértői feladatot látnak el.

3.1.4 Egészségügyi Radiológiai Mérő és Adatszolgáltató Hálózat

Az egészségügyi ágazat környezeti sugár-egészségügyi mérőhálózati feladatait a népegészségügyi feladatkörében eljáró fővárosi és megyei kormányhivatal szervezeti keretében működő Egészségügyi Radiológiai Mérő és Adatszolgáltató Hálózat (a továbbiakban: ERMAH) látja el. Az ERMAH hálózatra vonatkozó szabályokat az egészségügyi ágazat radiológiai mérő és adatszolgáltató hálózata felépítéséről és működéséről szóló 8/2002. (III. 12.) EüM rendelet tartalmazza.

Az ERMAH feladatkörében a környezeti sugárvédelmi ellenőrzés keretében mintát vételez, valamint helyszíni és laboratóriumi méréseket folytat le, adatokat továbbít a külön jogszabály alapján működỏ OKSER részére, illetve meghatározza a lakosság természetes és mesterséges forrásokból származó sugárterhelését.

Az ERMAH feladatait a megyei kormányhivatalok környezeti sugár-egészségügyi laboratóriumai, továbbá az Országos Közegészségügyi Intézet szervezeti keretében működő ERMAH Információs Központ (a továbbiakban: ERMAH IK) útján látja el.

Az ERMAH laboratóriumok által vizsgált minták: levegő aeroszol és fall-out, felszíni víz, hal, talaj, takarmány és fü, gabona és szemestermények, zöldségfélék, gyümölcsfélék, tej és tejtermékek, hús, kenyér, tojás, import élelmiszer, vegyes étrend, ivóvíz és ásványvíz.

Az OKI az OKSER és az ERMAH adatbázisainak felhasználásával az atomenergiáról szóló 1996. évi CXVI. törvény 20. § (1) bekezdés g) pontjában foglaltak teljesítése érdekében meghatározza a lakosság természetes forrásokból származó sugárterhelésének összetevőit olyan gyakorisággal, melynek alapján a sugárterhelés esetleges időbeli változása nyomon követhető, nyomon követi a lakosság nukleáris veszélyhelyzet utáni sugárterhelését, valamint meghatározza kiemelt létesítmények környezetében élỏ lakosságnak a létesítmény működéséből származó éves sugárterhelését. [12]

3.2 A hatósági ellenőrzés mérési módszerei

a) Levegőszűrők (aeroszol) mérése

- Az ERMAH esetében a közepes légforgalmú mintavevővel 7-10 naponként kell mintát venni, és a szűrők gamma-spektrometriai elemzését kell elvégezni, míg a kis légforgalmú mintavevőkkel vett napi minták esetében az összes béta-aktivitást kell meghatározni. (Ez utóbbiak esetén a 72 órás pihentetés utáni eredmények veendők figyelembe.) A mintavevő típusa - azaz az átszívott levegőmennyiség - és az alkalmazott mérés érzékenysége együttesen határozzák meg a levegő aktivitáskoncentrációjának kimutatási határát. Jellemzỏ kimutatási határértékek: 1-10 $\mu \mathrm{Bq} / \mathrm{m}^{3}$ (20-30 ezer m^{3} átszívott levegőből, félvezető-detektoros gammaspektrométerrel mérve a ${ }^{137}$ Cs aktivitást); illetve $0,5-2,5 \mathrm{mBq} / \mathrm{m}^{3}\left(50-300 \mathrm{~m}^{3}\right.$ átszívott levegőből, összes béta-aktivitás mérésével). Az összes béta-aktivitás mérése a legtöbb laboratóriumban plasztik szcintillációs mérőfejjel ellátott detektorral történik. Ezek a detektorok kb. $50 \mathrm{keV}-1 \mathrm{MeV}$ energiájú elektronok detektálásra alkalmasak. Más laboratóriumokban alacsony hátterủ alfa/béta számláló készülékekkel történik az összes béta-mérés, amelybe proporcionális detektorok vannak beépítve. Ezek a detektorok hasonlóképen a kb. 50 keV energiájú elektronok detektálására már alkalmasak.
- Az FmÁ NÉBIH Radioanalitikai Referencia Laboratóriumának: A budapesti telephelyen szűrőcserét hetente végeznek, az átszívott levegő $\mathrm{kb} .33000 \mathrm{~m}^{3} /$ hét, 72 órás pihentetés után gamma-spektrometriával mérik az aeroszol-mintákat.
- Oktatóreaktorban a levegỏ aeroszoltartalmához kötődő radioaktív koncentráció mérése: a mintavevő berendezés az OR épülete mellett 4 m -re, füves talajon helyezkedik el, a talajtól mintegy 2 m magasan, tartóoszlopra erősítve. A légszivattyú $6 \mathrm{~m}^{3} / \mathrm{h}$ névleges térfogatáramú. A mintákat hetente három alkalommal (48 illetve 72 órás mintavételi idő után) feltárás és legalább 48 órás pihentetési idő után összes bétaszámlálással mérik. Ha ez radioaktív anyag jelenlétét valószínűsíti a szürőn, akkor el kell végezni a minta részletes, nuklidspecifikus elemzését is.
b) Kihullás (fall-out) mérése:
- ERMAH mérési módszer: A mintavevő edények felülete $0,15-0,4 \mathrm{~m}^{2}$, a havi mintázással kapott teljes kihullás mintáknak a laboratóriumok - felszerelésüktől függően - csak az összes béta-aktivitását mérik, illetve azok gamma-spektrometriai elemzését is elvégzik. A mintavétel és mérés jellemzỏ kimutatási határa 20$500 \mathrm{mBq} /\left(\mathrm{m}^{2} \cdot\right.$ nap) (összes béta-aktivitáskoncentrációra) és $1-20 \mathrm{mBq} /\left(\mathrm{m}^{2} \cdot\right.$ nap) (a Cs137 izotópra gamma-spektrometriai vizsgálat alapján). Az összes béta-aktivitások mérése ugyanazon detektorokkal történik, mint az aeroszol minták esetében, amelyek a kb. 50 keV -nál nagyobb energiájú elektronok detektálására képesek.
- NÉBIH mérési módszer: A NÉBIH méréseit tekintve a mintavételi felület $1 \mathrm{~m}^{2}$, a mintagyűjtés ideje 1 hónap. Bepárlás után gamma-spektrometria, összes alfa, összes béta és radiostroncium meghatározás történik. 2016-ban a NÉBIH laboratóriumai 36 fall-out mintát vettek.
- Az Otatóreaktor mérési módszere: a mintavevő edény $0,2 \mathrm{~m}^{2}$ felületű alumíniumból készült. Az edényben folyamatosan van vízzel elegyedő folyadék, fagypont felett víz, alatta etilén-glikolos víz. A kihullási mintát havonta 1 alkalommal dolgozzák fel. A feldolgozás során a mintát $1-3 \mathrm{~cm}^{3}$ térfogatúra pároljuk, majd a bepárolt mintát szárítószekrényben szárazra pároljuk. A száraz minta összesbéta-intenzitását meghatározzuk. Amennyiben a mérés radioaktív anyag jelenlétét valószínűsíti a szűrőn, elvégezzük a minta részletes, nuklidspecifikus elemzését.
c) Talaj minták mérése
- A talajmintákat az előkészítés során tisztítják (eltávolítják a köveket, gyökér-, növénymaradványokat), száritják, homogenizálják. A mérések az összes bétaaktivitás, a gamma-sugárzó radionuklidok és a ${ }^{90} \mathrm{Sr}$ meghatározását jelentik. $\mathrm{A}^{90} \mathrm{Sr}$ aktivitáskoncentráció meghatározásához a mintán radiokémiai előkészítést, elválasztást kell végezni.
- Az ERMAH laboratóriumok negyedévente vesznek talajmintát a talaj felső 10 cm vastagságú rétegéből. A mintákon gamma-spektrometriai méréseket végeznek. A gamma-spektrometriai vizsgálatot a $110{ }^{\circ} \mathrm{C}$-on szárított mintákon, Marinelligeometriában ($600 \mathrm{~cm}^{3}$ térfogaton) végzik 20000 s mérési idővel. A ${ }^{137} \mathrm{Cs}$ aktivitáskoncentrációjára vonatkozó jellemző kimutatási határ: 0,3-1,5 Bq/kg. Az ERMAH laboratóriumai a talajminták összes béta-aktivitás mérését szcintillációs, valamint alacsony hátterủ alfa/béta detektorokkal végzik, amelyek a kb. 50 keV -nál nagyobb energiájú elektronok detektálására képesek.
- Az FmÁ NÉBIH laboratóriumainak mintavételi programjában a talajminták felső 5 cm -es szelete minden esetben elemzésre került (bolygatatlan talajnál az $5-20 \mathrm{~cm}$ rész is). A talajminták γ-spektrometriás vizsgálata száritás után $450 \mathrm{~cm}^{3}$ térfogatú Marinelli edényben, 80000 s mérési idővel, az összes- β aktivitáskoncentráció meghatározás 1 g talajból történik szűrővizsgálatként. A felső 5 cm -es szeletből kémiai elválasztás után a ${ }^{90} \mathrm{Sr}$ aktivitáskoncentráció is meghatározásra kerül. Ezeket a vizsgálatokat lehetőség szerint, minden mintából elvégzik. Jellemző kimutatási határok; ${ }^{137} \mathrm{Cs}: ~ 0,3-0,5 \mathrm{~Bq} / \mathrm{kg} ;{ }^{90} \mathrm{Sr}: 0,1-0,6 \mathrm{~Bq} / \mathrm{kg}$.
- Oktatóreaktor körüli talajminták radioaktivitásának meghatározása: az OR körüli, növényzettel borított területen évente két alkalommal (tavasszal és ősszel) mintát veszünk. A talajminta vételéhez legalább $100 \mathrm{~m}^{2}$ területet használunk. A mintázás során legalább 1 kg mintát gyűjtünk $0-5 \mathrm{~cm}$ mélységből, egyenletes területi elosztásban. A mintát szobahőmérsékleten legalább 3 napon át szárítjuk. A mintát Marinelli-edénybe téve nuklidspecifikus mérést végzünk.
d) Felszíni vizek mérése
- Az ERMAH mérési program keretében a ${ }^{137} \mathrm{Cs}$ aktivitáskoncentrációjára vonatkozó jellemző kimutatási határ: $2-20 \mathrm{mBq} / 1$.
- Az OKI KI SSFO a Duna-alprogram keretében havi gyakorisággal vesz mintát. A mintaelőkészítés a gamma-spektrometriai elemzés esetén bepárlást (45 literről 150 ml re), az összes béta-aktivitás mérés esetén bepárlást és $380^{\circ} \mathrm{C}$-on történő hamvasztást, a ${ }^{90} \mathrm{Sr}$-aktivitáskoncentráció mérése esetén további kémiai elválasztást jelent. Az összes béta-aktivitás méréseket az OKI KI SSFO az alacsony hátterű alfa/béta mérőkészülékkel méri. A detektorok a kb. 50 keV -nál nagyobb energiájú elektronok mérésére képesek. A trícium méréseket elektrolitikus dúsítás előzi meg, a káliumkoncentrációt atomabszorpciós spektrofotométerrel mérik.
- Oktatóreaktor dunavíz-mintavételezés: Mintvételezés helye a Duna partja, a Bertalan Lajos utca - Mủegyetem rakpart keresztezésénél kb. 200 méterre északi (felvízi) irányban, az alsó rakparti lépcsőnél. A mintavétel kétheti gyakorisággal történik. A feldolgozás során a mintából ismert mennyiséget $\left(500 \mathrm{~cm}^{3}-\mathrm{t}\right) 1-3 \mathrm{~cm}^{3}$ térfogatúra pároljuk, majd a bepárolt mintát a mérésre alkalmas formába hozzuk. A száraz minta összesbéta-intenzitását meghatározzuk. Ha a mérés a természetes radioaktivitást (legnagyobbrészt ${ }^{40} \mathrm{~K}$) meghaladóan radioaktív anyag jelenlétét valószinnüsiti, elvégezzük a minta részletes, nuklidspecifikus elemzését.
e) Ivóviz és élelmiszeripari technológiai víz
- Az ERMAH laboratóriumai az ivóvíz minták összes béta-aktivitását a korábban már említett szcintillációs detektorokkal és alacsony hátterủ alfa/béta mérőkészülékkel mérik. A detektorok a kb . 50 keV -nál nagyobb energiájú elektronok mérésére alkalmasak. Jellemző kimutatási határok: $0,20 \mathrm{~Bq} / 1\left({ }^{3} \mathrm{H}\right), 5-30 \mathrm{mBq} / 1\left({ }^{90} \mathrm{Sr}\right)$.
- Az FmÁ NÉBIH laboratóriumai is végeznek ivóvíz - elsősorban élelmiszer előállításhoz használt ivóvíz - méréseket. Jellemző kimutatási határok; ${ }^{137} \mathrm{Cs}: 0,0008$ $0,15 \mathrm{~Bq} / \mathrm{l} ;{ }^{3} \mathrm{H}: 0,9 \mathrm{~Bq} / \mathrm{l}$, összes alfa: $0,038-0,07$.
f) Takarmány
- A NÉBIH takarmány mintavételi programja kiterjed a takarmány alapanyagokra, keverékekre és premixekre. A γ-spektrum analízist a minta $450^{\circ} \mathrm{C}$-on izzított hamujának $50 \mathrm{~cm}^{3}$-ből (kb. 20-30 g), takarmánykeverékek, premixek esetén szárazanyagból $450 \mathrm{~cm}^{3}$-e Marinelli edényben 80000 s mérési idővel, az összes- β és összes alfa-aktivitáskoncentráció meghatározást pedig ennek a hamunak 1-2 g-jából végzik a laboratóriumok szürővizsgálatként. A takarmány alapanyagokból és a nyers tejjel együtt vett takarmányból kémiai elválasztás után a ${ }^{90} \mathrm{Sr}$ aktivitáskoncentrációt is meghatározzák. Jellemző kimutatási határok; ${ }^{137} \mathrm{Cs}: 0,03-2,3 \mathrm{~Bq} / \mathrm{kg} ;{ }^{90} \mathrm{Sr}: 0,05-6$ $\mathrm{Bq} / \mathrm{kg}$.
- Az ERMAH laboratóriumok negyedévente, megyénként vesznek fü, illetve szénamintát. A mintaelőkészítés száritást, a száraz tömeg mérését, majd hamvasztást jelent. A γ-spektrometriai analízist a minta $420^{\circ} \mathrm{C}$-on izzított hamujának legalább $50 \mathrm{~cm}^{3}$-éből, az összes béta-aktivitáskoncentráció meghatározását pedig ennek a hamunak 1 g -jából végzik a laboratóriumok. Az aktivitáskoncentrációt minden esetben száraz tömegre vonatkoztatják. Az összes béta-aktivitás méréseket ugyanazon mérőkészülékkel mérik, mint a talajmintákat. A detektorok a kb .50 keV -nál nagyobb energiájú elektronok mérésére képesek. A ${ }^{137} \mathrm{Cs}$ aktivitáskoncentráció mérések jellemző kimutatási határa: 0,3-1,5 $\mathrm{Bq} / \mathrm{kg}$, az összes béta-aktivitáskoncentrációk minden esetben kimutatási határ felett voltak.
g) Növényi eredetű, nyers élelmiszer
- Az FmÁ NÉBIH laboratóriumainak mintavételi programjában zöldségfélék, gyümölcsök illetve szabadban termő gombák is szerepelnek. A γ-spektrum analízist a minta $450^{\circ} \mathrm{C}$-on izzított hamujának $50 \mathrm{~cm}^{3}$-ből ($\mathrm{kb} .20-30 \mathrm{~g}$), 80000 s mérési idővel, az összes- β aktivitáskoncentráció meghatározást pedig ennek a hamunak 1 g-jából végzik a laboratóriumok szűrővizsgálatként. Szintén ebből a hamuból történik az összes- α szűrővizsgálat. (ezek a jelentésben nem szerepelnek). Leveles zöldségfélékből, vadon termő ehető gombákból illetve a gyökérzöldségekből kémiai elválasztás után a ${ }^{90} \mathrm{Sr}$ aktivitáskoncentrációt is meghatározzák. 2016-ban a 19 megye és Budapest területéről 444 nyers növényi élelmiszerminta vizsgálatát végezték el az FmÁ NÉBIH laboratóriumai. Jellemzỏ kimutatási határok; ${ }^{137} \mathrm{Cs}: 0,01-0,89 \mathrm{~Bq} / \mathrm{kg}$; ${ }^{90} \mathrm{Sr}: 0,03-0,12 \mathrm{~Bq} / \mathrm{kg}$. 2007. évtől a vizsgálati programban szerepel az EU más tagországaiból vagy harmadik országból származó zöldségek, gyümölcsök, füszerek, szárított gombák, aszalt gyümölcsök ${ }^{137} \mathrm{Cs}$ szűrő vizsgálata. A minták mérése eredeti anyagból, általában $450 \mathrm{~cm}^{3}$ térfogatú Marinelli geometriában, 3600 s mérési idővel történik, 2016-ban 339 ilyen típusú mintát vettek (ezen utóbbi adatok - az eltérő érzékenységủ mérési módszer miatt - az ábrán és a táblázatban nem szerepelnek).
- Az ERMAH laboratóriumok mintavételi programja decentrum régiónként és negyedévenként 2-2 zöldségfajtát, valamint az első és negyedik negyedévben 1-1, a második és harmadik negyedévben 2-2 gyümölcsfajtát tartalmaz. Az EüÁ ERMAH, és egyéb mérési programjai keretében 2016-ban összesen 153 zöldség és gyümölcs minta vizsgálatát végezték el. A minta-előkészítés tisztítást, a tömeg mérését, száritást, majd
hamvasztást jelent. A γ-spektrometriai analízist a minta $420^{\circ} \mathrm{C}$-on izzított hamujának legalább $50 \mathrm{~cm}^{3}$-éből, az összes béta-aktivitáskoncentráció meghatározást pedig ennek a hamunak 1 g -jából végzik a laboratóriumok. Az aktivitáskoncentrációt nyers tömegre vonatkoztatják. Az ERMAH laboratóriumai a zöldségek, gyümölcsök összes béta-aktivitását a korábban említett szcintillációs detektorokkal és alacsony hátterủ alfa/béta mérőkészülékkel mérik. A detektorok a kb. 50 keV -nál nagyobb energiájú elektronok mérésére alkalmasak. A ${ }^{137} \mathrm{Cs}$ aktivitáskoncentrációjára vonatkozó jellemző kimutatási határ: $0,01-0,3 \mathrm{~Bq} / \mathrm{kg}$.
h) Gabonafélék és azokból készült termékek
- Az FmÁ NÉBIH laboratóriumainak monitoring programja ebben az élelmiszercsoportban is lefedi az országot; búza, árpa, kukorica, rozs minták szerepelnek. A γ-spektrum analízist a minta $450^{\circ} \mathrm{C}$-on izzított hamujának $50 \mathrm{~cm}^{3}$-bỏl (kb. 20-30 g), 80000 s mérési idővel, az összes- β aktivitáskoncentráció meghatározást pedig ennek a hamunak 1 g -jából végzik a laboratóriumok szűrővizsgálatként. Szintén ebből a hamuból történik az összes- α szűrővizsgálat (a jelentésben nem szerepelnek). Kémiai elválasztás után a ${ }^{90} \mathrm{Sr}$ aktivitáskoncentrációt is meghatározzák. Ezeket a vizsgálatokat, lehetőség szerint, minden mintából elvégzik. 2016-ban a 19 megye és Budapest területéröl 180 gabonaféle vizsgálatát végezték el az FmÁ NÉBIH laboratóriumai. Jellemző kimutatási határok; ${ }^{137} \mathrm{Cs}: 0,02-0,9 \mathrm{~Bq} / \mathrm{kg} ;{ }^{90} \mathrm{Sr}: 0,03-0,5$ $\mathrm{Bq} / \mathrm{kg}$. 2007. évtől szerepel az FmÁ NÉBIH vizsgálati programjában a kenyérfélék, péksütemények ${ }^{137} \mathrm{Cs}$ szưrő vizsgálata is. A minták mérése eredeti anyagból, $450 \mathrm{~cm}^{3}$ térfogatú Marinelli geometriában, 3600 s mérési idővel történik, 2016-ban 372 ilyen típusú mintát vettek (ezen utóbbi adatok - az alacsonyabb érzékenységủ mérési módszer miatt - az ábrán és a táblázatban nem szerepelnek).
- Az EüÁ ERMAH mintavételi programjai keretében mintaelökészítés szárítást, majd hamvasztást jelent. A γ-spektrometriai analizist a minta $420^{\circ} \mathrm{C}$-on izzított hamujának legalább $50 \mathrm{~cm}^{3}$-ből, az összes béta-aktivitáskoncentráció meghatározást pedig ennek a hamunak 1 g -jából végzik a laboratóriumok. Az aktivitáskoncentrációt száraz tömegre vonatkoztatják. Az összes béta-aktivitás mérések ugyanazon mérőműszerrel történik, mint a zöldség és gyümölcs minták esetében. A ${ }^{137} \mathrm{Cs}$ aktivitáskoncentrációjára vonatkozó jellemző kimutatási határ: $0,01-0,2 \mathrm{~Bq} / \mathrm{kg}$.
i) Tej, tejtermék
- Az FmÁ NÉBIH laboratóriumainak mintavételi programjában tej, sajt illetve tejpor minták szerepelnek. A tej mintavétel havonta, tejgazdaságból vagy kistermelőtől, a takarmány mintavétellel együtt történik. A γ-spektrum analízist a minta $450^{\circ} \mathrm{C}$-on izzított hamujának $50 \mathrm{~cm}^{3}$-ből (kb. 20-30 g), 80000 s mérési idővel, az összes- β aktivitáskoncentráció meghatározást pedig ennek a hamunak 1 g-jából végzik a laboratóriumok szűrővizsgálatként (a jelentésben nem szerepelnek). Szintén ebből a hamuból történik az összes- α aktivitás mérése (a jelentésben nem szerepel), illetve a ${ }^{90} \mathrm{Sr}$ radiokémiai elválasztása. Ezeket a vizsgálatokat minden mintából elvégzik. 2016ban a 19 megye és Budapest területéről 406 tej- és tejtermékminta vizsgálatát végezték el az FmÁ NÉBIH laboratóriumai. Jellemző kimutatási határok: ${ }^{137} \mathrm{Cs}: 0,01-1,5$ $\mathrm{Bq} / \mathrm{kg} ;{ }^{90} \mathrm{Sr}: 0,018-0,6 \mathrm{~Bq} / \mathrm{kg}$.
- Az ERMAH laboratóriumok mérési programja 6 megyében és a fővárosban havonta 11 tejminta, továbbá negyedévente $1-1$ sajt, túró és tejporminta vételére terjed ki. A mintaelőkészítés hamvasztást jelent. A γ-spektrometriai analízist a minta $420^{\circ} \mathrm{C}$-on izzított hamujának legalább $50 \mathrm{~cm}^{3}$-ből, az összes béta-aktivitáskoncentráció meghatározást pedig ennek a hamunak 1 g-jából végzik a laboratóriumok, illetve a ${ }^{90} \mathrm{Sr}$ méréséhez ebből kiindulva végeznek radiokémiai elválasztást. Az ERMAH laboratóriumai a tej és tejtermékek összes béta-aktivitását a korábban említett
szcintillációs detektorokkal és alacsony hátterủ alfa/béta mérőkészülékkel mérik. A ${ }^{137} \mathrm{Cs}$ aktivitáskoncentrációjára vonatkozó jellemző kimutatási határ: $0,01-0,25 \mathrm{~Bq} / \mathrm{kg}$.
j) Hús és hústermékek aktivitáskoncentrációi
- Az FmÁ NÉBIH laboratóriumainak mintavételi programjában sertés, marha, baromfi, házinyúl, juh, hal és vadhús szerepel. A γ-spektrum analizist $105^{\circ} \mathrm{C}$-on szárított $450 \mathrm{~cm}^{3}$-ből (kb. 200-250 g), 80000 s mérési idővel végzik a laboratóriumok. 2016ben a 19 megye és Budapest területéről 333 húsminta vizsgálatát végezték el az FmÁ NÉBIH laboratóriumai. Jellemző kimutatási határok; ${ }^{137} \mathrm{Cs}: 0,05-1,7 \mathrm{~Bq} / \mathrm{kg}$.
- 2007. évtől szerepel az FmÁ NÉBIH monitoring programjában a húskészítmények, tengeri hal és tengeri puhatestűek ${ }^{137} \mathrm{Cs}$ szűrő vizsgálata. A minták mérése eredeti anyagból, $450 \mathrm{~cm}^{3}$ térfogatú Marinelli geometriában, 3600 s mérési idővel történik, 2016-ben 177 ilyen típusú mintát vettek (ezen utóbbi adatok - az alacsonyabb érzékenységủ mérési módszer miatt - az ábrán és a táblázatban nem szerepelnek).
- Az ERMAH laboratóriumok mérési programja 6 megyében és a fővárosban negyedévente 1-1 marha-, sertés- és baromfi-húsminta vételére terjed ki. A mintaelőkészítés hamvasztást jelent. A γ-spektrometriai analizist a minta $420^{\circ} \mathrm{C}$-on izzított hamujának legalább $50 \mathrm{~cm}^{3}$-ből, az összes béta-aktivitáskoncentráció meghatározást pedig ennek a hamunak 1 g-jából végzik a laboratóriumok. Az ERMAH laboratóriumai az állati eredetủ minták összes béta-aktivitását szintén a korábban már említett szcintillációs detektorokkal és alacsony hátterủ alfa/béta mérőkészülékkel mérik. Jellemző kimutatási határ: $0,01-0,2 \mathrm{~Bq} / \mathrm{kg}\left({ }^{137} \mathrm{Cs}\right)$.
k) Vegyes élelmiszer
- Az EüÁ ERMAH mérési programjában a decentrumok megyéiben szerepel félévenkénti mintavétel. A γ-spektrometriai analízist a minta $420^{\circ} \mathrm{C}$-on izzított teljes hamujából, az összes béta-aktivitáskoncentráció meghatározást pedig ennek a hamunak 0,3 g-jából végzik a laboratóriumok. A minta ${ }^{90} \mathrm{Sr}$ aktivitáskoncentrációját 10 g hamuból kiindulva határozzák meg radiokémiai feltárás és elválasztás után. Az ERMAH laboratóriumai a minták összes béta-aktivitását szintén szcintillációs detektorokkal és alacsony hátterủ alfa/béta mérőkészülékkel mérik. Az eredményeket $\mathrm{Bq} /$ nap egységben adtuk meg. Jellemző kimutatási határok: $0,01-0,05 \mathrm{~Bq} / \mathrm{kg}\left({ }^{90} \mathrm{Sr}\right.$ és ${ }^{137} \mathrm{Cs}$ radionuklidra egyaránt).

4 Országos mérési adatok értékelése

Az eredmények egyik nagy csoportja az országos sugárzási helyzetet jellemzi általában, míg a másik csoport valamilyen létesítmény múködéséhez, annak esetleges hatásaihoz köthető. Jelen fejezet 2016-os évre vonatkozó mérési adatokat mutatja be, ismertetésre kerülnek a mért országos gamma-dózisteljesítmény értékek, aeroszol mérési eredmények, kihullás, növény és talajminták feldolgozása során kapott eredmények, növény és állatminták, élelmiszerek, valamint felszíni és ivóvíz mérések eredményei egyaránt.

4.1 A külső gamma-dózisteljesítmény mérések eredményei

4.1.1 A Radiológiai Távmérő Hálózat adatai

A külső gamma-dózisteljesítmény adatok az Országos Sugárfigyelő, Jelző és Ellenőrző Rendszer (OSJER) részeként működő Radiológiai Távmérő Hálózat (TMH) mérésein alapulnak. Az OSJER TMH-t hat ágazat működteti. Az OSJER TMH ágazatai és az általuk üzemeltetett mérőállomások száma a következők:

- Belügyminisztérium, Országos Katasztrófavédelmi Főigazgatóság (BM OKF) - 26 állomás
- Magyar Honvédség (MH) - 38 állomás
- Országos Meteorológiai Szolgálat (OMSZ) - 28 állomás
- MVM Paksi Atomerőmű Zrt (PA Zrt) - 20 állomás
- Emberi Erőforrások Minisztériuma (EMMI- oktatási ágazat) - 11 állomás
- Radioaktív Hulladékokat Kezelő Közhasznú Nonprofit Kft. (RHK Kft. - Bátaapáti telephely) - 4 állomás

A mérőállomásról származó gamma-dózisteljesítmény adatok az egyes ágazati információs központokon keresztül a BM OKF Nukleáris Baleseti Információs és Értékelỏ Központba érkeznek, ahonnan a megfelelő feldolgozás után rendszeres időközönként átadásra kerülnek az OKSER adatbázisa számára, valamint a sugárzási adatok felhasználásával készitett országos sugárzási helyzetjelentés havi rendszerességgel megküldésre kerül az ONER ágazatok vezetőinek.

Alaphelyzetben a BM OKF, az EMMI, a PA Zrt. és az RHK Kft. adatai 10 percenként, az OMSZ adatai óránként, az MH adatai 3 óránként érkeznek a Nukleáris Baleseti Információs és Értékelő Központba (NBIÉK). Normál időszakban az adatok ritkábban kerülnek át az OKSER adatbázisba. A rendszerben a riasztási szint minden mérỏállomáson egységesen $500 \mathrm{nSv} /$ óra. A BM OKF alkalmaz egy figyelmeztetési szintet is, aminek a túllépése esetén a változást ki kell vizsgálni. A figyelmeztetési szint értéke $250 \mathrm{nSv} / \mathrm{h}$. A riasztási szint túllépése esetén az egyes mérőállomások a központba riasztási jelet küldenek és ezután minden méróállomás esetében lehetőség van átállni a 10 percenként történő adattovábbitásra. A riasztási állapot elérése után a rendszer az OKSER adatbázis számára az adatokat az alaphelyzethez képest nagyobb gyakorisággal tudja biztosítani.

A mérési adatok a lakosság részére a www.katasztrofavedelem.hu , www.met.hu honlapokon keresztül elérhetőek. Az Európai Unió által indított EURDEP (Európai Radiológiai Adatcsere Platform) program keretében az adatokat a szervező intézetbe (Joint Research Centre, Ispra, Olaszország) is megküldi a BM Országos Katasztrófavédelmi Főigazgatóság így ezek az ottani honlapon (www.eurdep.jrc.ec.europa.eu) is megtekinthetők.

Az Oktatási Ágazathoz tartozó egyetemeken elhelyezett, 11 mérőszonda dózisteljesítmény adatait az OÁ-OSJER központja (BME-NTI) gyűjti és értékeli. Az egyetemi mérőhálózat adatai a http://omosjer.reak.bme.hu/ honlapon elérhetőek.

A mérőállomások országos területi elhelyezkedését az 4-1. ábra szemlélteti. Látható, hogy a területi eloszlás nem egyenletes, a potenciális nukleáris veszélyforrások környezetében - pl. Budapest és a Paksi Atomerőmű térségében - az állomások sűrűsége nagyobb, egyes térségekben azonban megyénként csak 1-2 állomás található.

Az adott pontban mérhető környezeti dózisteljesítményt négy tényező határozza meg:

- a kozmikus sugárzás, országon belüli eloszlása nagyrészt homogénnak tekinthető,
- a talajban található és onnan kikerülỏ természetes radionuklidok sugárzása,
- az épitett környezet jellemzői (a szonda elhelyezkedése),
- a létesítmény működésének hatása.

Nyilvánvaló, hogy egy létesítmény környezet-ellenőrzése szempontjából a negyedik tényező a fontos, a másik három csupán az eredményt befolyásoló „zaj", azaz a a természetes és épített környezet által keltett háttérsugárzás. Ugyanakkor a lakosság sugárterhelésének meghatározásában az összes komponens együttes hatását kell figyelembe vennünk. A méróállomások telepítési helye alapvetően meghatározza a természetes és épített környezet által keltett háttér dózisteljesítmény szintet. Pl. a Tatán telepített mérőállomások (304 és 425 kódok) eredményei jelentősen eltérnek egymástól (4-1. táblázat), mivel az egyik mérőállomás füves terepen, a másik pedig salakkal borított területen van telepítve, és a salak jelentősen megnöveli a dózisteljesítményt. Hasonló eltérésre láthatunk példát a 4-3. ábrán, ha a mérőszonda a földfelszínen, vagy egy régi téglaépítésű épület falára (HU0213), illetve egy könnyüszerkezetes épület falára egy emelet magasan (HU0212) van felszerelve.

A 4-2. ábrán a napi dózisteljesítmények országos átlagának, illetve az adott napon mért minimum és maximum értékeknek a változása látható 2016-ban. A tárgyidőszakban nem történt olyan valós esemény, amely a riasztási szint túllépését eredményezte volna. A napi dózisteljesítmény országos éves átlaga $95 \mathrm{nSv} / o ́ r a$, ami közel megegyezik a 2015. évi értékkel. A napi átlagok az 57-190 nSv/óra közötti tartományban mozogtak. Az adatok környezeti dózisegyenérték teljesítményben vannak megadva.

4-1. táblázat
Országos dózisteljesítmény eredmények napi átlagainak jellemzői 2016-ban (N az üzemeló napok számát jelöli)

Állomáskód*	Település neve	Átlag	Minimum	Maximum	Szórás	N
		$\mathrm{nSv} / \mathrm{h}$	nSv/h	nSv/h	nSv/h	
HU0101	Rétság	96	92	108	2	365
HU0104	Ózd	84	79	133	4	339
HU0109	Szekszárd	97	85	115	3	365
HU0118	Veszprém	102	94	119	4	366
HU0120	Budapest XIV. OKF	87	81	95	3	363
HU0124	Salgótarján	104	96	113	3	365
HU0130	Gyomaendrőd	97	90	111	3	354
HU0131	Vajta	87	81	99	2	362
HU0132	Budapest - Ferihegy	82	78	102	3	361
HU0133	Komárom	96	92	106	2	363
HU0134	Szombathely	107	100	126	3	360
HU0135	Solt	85	77	98	3	362
HU0136	Zalaegerszeg	100	96	115	2	366
HU0137	Kisújszállás	105	85	121	8	366
HU0138	Berettyóújfalu	103	74	127	14	366
HU0139	Hajdúszoboszló	106	91	127	9	366
HU0140	Gyula	118	93	138	12	360
HU0141	Mezőkovácsháza	109	101	122	3	366
HU0142	Kiskunfélegyháza	91	79	116	6	366
HU0143	Vámosmikola	102	81	133	15	366
HU0144	Mór	97	76	141	21	366
HU0145	Siófok	89	59	131	20	366
HU0146	Dombóvár	98	73	113	7	366
HU0147	Letenye	111	102	126	5	362
HU0148	Lenti	106	94	123	6	363
HU0149	Tiszaújváros	106	86	132	10	364
HU0201	Bátaapáti - Zsibrik halastó	123	106	142	9	343
HU0202	Bátaapáti - Mórágy	145	128	168	5	354
HU0204	Bátaapáti - Vadászház	141	126	160	8	364
HU0211	Budapest BME	87	84	96	2	333
HU0212	Budapest ELTE	59	55	66	2	365
HU0213	Budapest SOTE	115	113	119	1	355
HU0214	Debrecen	97	92	106	2	363
HU0215	Gödöllỏ	94	92	101	1	358
HU0216	Kaposvár	114	106	121	4	107
HU0217	Pécs	92	88	96	2	199
HU0218	Sopron	94	92	108	2	345
HU0219	Szeged 1-Szilárdtest és Radiokémia Tanszék	99	97	125	3	293
HU0220	Szeged2 - Orvostudományi Kar	101	92	134	13	337
HU0221	Veszprém	77	74	87	2	309
HU0223	Szombathely	78	74	89	2	318
HU0301	Siklós	112	104	135	4	251
HU0302	Székesfehérvár	82	79	94	2	353
HU0303	Veszprém	78	75	89	2	334
HU0304	Tata	150	137	168	6	323
HU0305	Győr	81	77	95	2	353
HU0307	Várpalota	92	86	116	3	334

Ållomáskód*	Település neve	Átlag	Minimum	Maximum	Szórás	N
		nSv/h	nSv/h	nSv/h	nSv/h	
HU0310	Debrecen	88	84	108	3	353
HU0311	Táborfalva	80	76	90	2	352
HU0312	Hódmezővásárhely	99	93	130	4	335
HU0316	Kaposvár	122	101	136	6	351
HU0322	Medina	96	86	115	3	350
HU0326	Jobbágyi	88	84	106	2	353
HU0328	Kecskemét	78	74	93	3	353
HU0329	Szentes	86	82	97	2	346
HU0331	Budapest XIII. ker. (HM II)	76	72	82	2	197
HU0332	Zalaegerszeg	102	98	117	3	312
HU0333	Miskolc	97	93	107	2	219
HU0335	Békéscsaba	95	88	110	3	353
HU0337	Pápa	88	82	110	4	353
HU0338	Szekszárd	142	135	157	4	326
HU0344	Budapest V. ker. HM I	83	80	90	2	353
HU0346	Budakeszi	122	117	136	3	272
HU0348	Pusztavacs	64	45	82	11	353
HU0351	Recsk	91	85	147	4	352
HU0355	Szolnok Repülőtér	91	85	110	4	351
HU0356	Kecskemét Repülőtér	76	72	92	3	353
HU0357	Pápa Repülötér	95	89	116	4	352
HU0358	Szolnok Repülötér 2	91	86	114	4	352
HU0359	Nyírtelek	98	88	115	4	352
HU0387	Erdőbénye	97	82	125	5	298
HU0389	Buják	92	87	126	4	353
HU0390	Budapest XI. Ker. (HM IV)	132	127	143	3	125
HU0391	Bánkút	96	87	119	4	347
HU0400	Mosonmagyaróvár	99	52	113	5	229
HU0401	Nyíregyháza Napkor	75	70	97	3	201
HU0402	Sopron	78	72	143	6	193
HU0403	Baja	81	77	100	3	366
HU0404	Békéscsaba	78	72	93	3	366
HU0405	Kékestető	90	83	120	3	366
HU0406	Budapest XVIII. ker. (Lörinc)	83	77	97	3	323
HU0407	Györ	82	75	153	6	192
HU0408	Szentgotthárd Farkasfa	96	88	150	6	193
HU0409	Szeged	78	72	112	3	319
HU0410	Debrecen	91	85	100	3	166
HU0411	Miskolc	78	74	102	2	320
HU0412	Pécs / Pogány RK	108	93	127	4	366
HU0413	Jósvafó	77	71	98	3	366
HU0414	Szécsény	89	71	100	6	214
HU0415	Tát	89	84	100	3	364
HU0416	Tata	66	60	88	7	365
HU0417	Záhony	73	67	92	3	366
HU0418	Nagykanizsa	94	87	109	4	192
HU0419	Homokszentgyörgy	83	76	95	3	295
HU0420	Jászapáti	85	81	104	3	319
HU0421	Kelebia	74	70	85	2	236
HU0424	Pitvaros	98	93	119	4	366
HU0425	Sátoraljaújhely	97	88	114	4	363
HU0426	Soltvadkert	72	69	85	2	236

Ällomáskód**	Település neve	Átlag	Minimum	Maximum	Szórás	N
			$\mathbf{n S v / h}$	$\mathbf{n S v / h}$	$\mathbf{n S v / h}$	
HU0427	Tésa	87	80	146	5	195
HU0428	Bátaapáti	141	126	160	8	364
HU0429	Csenger	99	90	116	4	322
HU0500	Paks A1	73	68	91	3	366
HU0501	Paks A2	71	68	87	3	366
HU0502	Paks A3	78	73	87	2	366
HU0503	Paks A4	77	72	92	2	366
HU0504	Paks A5	82	77	102	3	366
HU0505	Paks A6	73	68	97	3	366
HU0506	Paks A7	70	67	88	2	366
HU0507	Paks A8	83	78	95	3	366
HU0508	Paks A9	71	67	81	2	366
HU0509	Paks G1	71	67	95	3	366
HU0510	Paks G2	66	62	82	3	366
HU0511	Paks G3	72	57	93	3	366
HU0512	Paks G4	76	72	98	3	365
HU0513	Paks G5	74	70	92	3	366
HU0514	Paks G6	71	67	83	2	366
HU0515	Paks G7	76	70	89	2	366
HU0516	Paks G8	83	76	100	3	366
HU0517	Paks G9	83	76	100	3	366
HU0518	Paks G10	73	69	89	3	366
HU0519	Paks G11	73	68	90	3	366

* A 100-as kezdetü kódok a BM OKF, a 201-204 közöttiek- az RHK Kft. - Bátaapáti, 211-223 közöttiek az

EMMI Oktatási Ágazat,- a 300 -as kezdetủek a MH, a 400 -as kezdetủek az OMSZ, az 500 -as kezdetủek pedig a Paksi Atomerőmủ mérőhelyeit jelölik.

4-2. ábra
A napi dózisteljesítmények országos átlagainak, maximális és minimális értékeinek változása 2016-ban

4.1.2 Időszakos külső gamma-dózisteljesítmény mérések

Az ERMAH laboratóriumok az OKI KI SSFO kivételével hetente egy alkalommal mérik a környezeti gamma-dózisteljesítményt a telephelyükön, az OKI KI SSFO-ban ez napi gyakorisággal történik. A mérési eredményeket az 4-2. táblázat tartalmazza. Az adatok fotondózisegyenérték teljesítményben (Hx-ben) vannak megadva. Az ERMAH laboratóriumok mérési eredményei megfeleltethetőek az OSJER TMH által mért értékeknek.

4-2. táblázat
 Az ERMAH laboratóriumok mérési adatai

Település	Átlag, $\mathbf{n S v} / \mathbf{h}$	Minimum, $\mathbf{n S v} / \mathbf{h}$	Maximum, $\mathbf{n S v / h}$	Szórás, nSv/h	\mathbf{N}
Debrecen	130	90	180	22	51
Györ	106	98	118	6	53
Miskolc	129	117	167	9	52
Budapest (OKI KI SSFO)	98	86	127	5	243
Szeged	98	89	108	4	51
Szekszárd	106	95	120	6	52

A külső gammadózis-teljesítmény mérése ún. integráló típusú passzív detektorokkal is történhet. Az OKI KI SSFO egy 39 pontból álló PAE környéki TLD-hálózatot működtet. A mérőhálózat mérési helyszíneire negyedévente küldik ki a termolumineszcens detektorokat (TLD) postán vagy cserélik személyesen, így minden detektor negyedéves expozíciós időszak után kerül vissza. A detektorokat a szabadban helyezik ki a talajtól kb. 1 - $1,5 \mathrm{~m}$ magasságban.

A gamma-dózisteljesítményt minden munkanapon háromszor mérik meg az OKI KI SSFO "C"-épülete melletti füves területen AUTOMESS 6150 AD 6/H típusú műszerrel.
2016-ban az OKI KI SSFO telephelyének (Budapest, Budafok) udvarán végzett dózisteljesímtény mérések heti átlagát a 4-3. táblázat tartalmazza.

4-3. táblázat
Az OKI KI SSFO udvarán 2016-ban végzett dózisteljesítmény mérések heti átlagai

Hét	Átlag (nSv/h)	Terjed. (nSv/h)	Hét	Átlag (nSv/h)	Terjed. ($\mathrm{nSv} / \mathrm{h}$)	Hét	Åtlag (nSv/h)	Terjed. ($\mathrm{nSv} / \mathrm{h}$)	Hét	Átlag (nSv/h)	Terjed. ($\mathrm{nSv} / \mathrm{h}$)
1	104,6	91-115	14	106,9	98-117	27	109,4	105-117	40	108,1	100-117
2	104,9	98-110	15	106,9	98-120	28	110,0	105-122	41	107,4	104-117
3	102,4	97-109	16	108,3	102-114	29	102, 7	98-110	42	109,4	103-128
4	104,9	98-112	17	107,0	98-122	30	105,1	90-139	43	103,2	98-107
5	103,3	97-112	18	107,3	100-114	31	94,8	90-110	44	101,0	98-106
6	110,7	103-137	19	107,3	100-117	32	96,1	90-110	45	100,7	95-108
7	111,3	101-129	20	104,3	97-113	33	97,8	88-110	46	98,4	92-105
8	101,2	94-107	21	105,7	98-110	34	108,6	97-110	47	104,2	98-109
9	106,6	98-124	22	105,3	98-110	35	105,7	97-110	48	101,7	97-110
10	105,6	95-117	23	103,0	97-108	36	109,9	102-123	49	101,9	96-108
11	100,8	95-106	24	105,3	102-109	37	107,5	99-115	50	100,1	93-105
12	104,8	100-110	25	104,8	97-112	38	104,4	97-109	51	-	-
13	103,8	100-106	26	107,8	106-133	39	109,6	100-120	52	-	-

4.2 Levegőszürők (aeroszol) mérési eredményei

A levegöbe került radionuklidok egy része a levegőben található, por alakú szennyezőkhöz kötődik, ezeket nevezzük aeroszoloknak. Az aeroszolok eltérően viselkednek a gáz halmazállapotú anyagokhoz képest, mint pl. az atomerőműből kibocsátott nemesgázok, vagy a természetes radon. Az aeroszol formájú radionuklidok a levegőből megfelelő szűrővel kiszürhetőek. Az aeroszolok koncentrációjának ismerete a lakosság sugárterhelésének szempontjából meghatározó, egyrészt a belégzésük okozta dózis miatt, másrészt a talajra, növényzetre való kihullásuk - így a táplálékláncba való bekerülésük - kiindulási adataként.

Országosnak mondható kiépítettséget az Egészségügyi Ágazathoz tartozó Egészségügyi Radiológiai Mérő és Adatszolgáltató Hálózat (ERMAH) laboratóriumai jelentenek. Emellett mint létesitményfüggetlen mérési pont - az FmÁ NÉBIH Radioanalitikai Referencia Laboratóriumának budapesti telephelyén müködik egy nagy teljesítményủ aeroszol mintavevő.

Az ERMAH laboratóriumok levegőminta-vevői sajnos nem azonos teljesítőképességűek, ami az elvégezhető elemzések lehetőségét is meghatározza. 2016-ban közepes légforgalmú mintavevővel 4 laboratórium, kis légforgalmú mintavevővel ugyancsak 4 laboratórium rendelkezett. Az ERMAH laboratóriumok aeroszol mintavételi gyakoriságait és vizsgálati jellemzőit az éves munkaterv írja elő. Eszerint a közepes légforgalmú mintavevővel hetenként kell mintát venni, és a szűrők gamma-spektrometriai elemzését kell elvégezni, mig a kis légforgalmú mintavevőkkel vett napi minták esetében az összes béta-aktivitást kell meghatározni. (Ez utóbbiak esetén a legalább 72 órás pihentetés utáni eredmények veendők figyelembe.)

Az EüÁ ERMAH, és egyéb programjai keretében 2016-ban 591 aeroszol mintát vettek. Az FmÁ NÉBIH Radioanalitikai Referencia Laboratóriuma 2016-ban 52 mintát vett.
A 4-4.táblázatban közöljük az ERMAH és NÉBIH laboratóriumok aeroszol mérési eredményeit jellemzỏ éves átlagokat, minimum és maximum értékeket, szórásokat, továbbá az éves mintaszámot és a kimutatási határ alatti eredmények számát; valamint az országos, összesített értékeket is. A táblázatból láthatóan a ${ }^{137} \mathrm{Cs}$ koncentrációi a kimutatási határ (kh) felett is megjelentek, a $0,0066 \mathrm{mBq} / \mathrm{m}^{3}$-es értékig. Az aeroszolban mérhetỏ természetes eredetủ ${ }^{7} \mathrm{Be}$ radionuklid koncentrációjának szokásos értéktartománya $0,27-11 \mathrm{mBq} / \mathrm{m}^{3}$ közötti. Az aeroszol-szűrők legalább 72 órás pihentetés után mért összes béta-aktivitásai jellemzően $0,1-25 \mathrm{mBq} / \mathrm{m}^{3}$ értékủek. Megállapítható, hogy az aeroszol mérési eredmények mind az átlagokat, mind a minimum, maximum értékeket tekintve általában jól egyeznek a korábbi évek adataival.

Országos aeroszol mérési eredmények éves jellemzői 2016-ban (EüÁ és FmÁ)

Radionuklid	Megye	Atlag, $\mathbf{m B q} / \mathbf{m}^{\mathbf{3}}$	Minimum, $\mathbf{m B q} \mathbf{m}^{\mathbf{3}}$	$\mathbf{M a x i m u m ,}$ $\mathbf{m B q} \mathbf{m}^{\mathbf{3}}$	$\mathbf{S z 6} \mathbf{r a ́ s ,}$ $\mathbf{m B q} / \mathbf{m}^{\mathbf{3}}$	\mathbf{N}	Kha
Be-7	BP	4,4	1,2	11	1,9	101	0
Be-7	GY	3,1	0,27	6,0	1,4	44	1
Be-7	TO	3,7	1,0	7,7	1,7	48	0
Cs-137	BP	0,0013	0,0004	0,0024	0,00037	101	64
Cs-137	GY	-	-	0,0066	-	42	42
Cs-137	TO	-	-	-	-	48	48
Összes béta	BK	1,5	1,2	2,6	0,44	52	35
Összes béta	BP	0,89	0,92	2,7	0,48	194	121
Összes béta	CS	4,5	2,0	25	4,0	36	0
Összes béta	HA	0,68	0,10	20	2,7	53	12
Összes béta	TO	1,1	0,59	2,5	0,52	103	74
Be-7	Összesen	$\mathbf{3 , 9}$	$\mathbf{0 , 2 7}$	$\mathbf{1 1}$	-	$\mathbf{1 9 3}$	$\mathbf{1}$
Cs-137	Összesen	$\mathbf{0 , 0 0 1 1}$	$\mathbf{0 , 0 0 0 4 0}$	$\mathbf{0 , 0 0 6 6}$	-	$\mathbf{1 9 1}$	$\mathbf{1 5 4}$
Összes béta	Összesen	$\mathbf{1 , 3}$	$\mathbf{0 , 1 0}$	$\mathbf{2 5}$	-	$\mathbf{4 3 8}$	$\mathbf{2 4 2}$

4.3 Kihullás (fall-out) eredmények

A levegőbe került, aeroszol formájú radionuklidok egy része kihullik, kiülepedik, illetve a csapadékkal kimosódik a talajra és növényzetre. Ez a folyamat jelenti a táplálékláncba való bekerülésük kiindulási pontját, emiatt a kihullás meghatározása a lakosság sugárterhelésének becslése, előrejelzése szempontjából nagy fontosságú. A kihullás megnevezésére elterjedten használják a „fall-out" angol kifejezést is. A jelentésben a kihullás szót „teljes kihullás" értelemben használjuk, ami a száraz kiülepedést és kimosódást együttesen tartalmazza.

Országos kiterjedésűnek mondható mintavételi és mérési programot az ERMAH laboratóriumok végeznek. Emellett a NÉBIH három telephelyen (Budapest, Szekszárd és Szombathely) gyûjti és vizsgálja a csapadékvizet (fall-out).

Az ERMAH a kihullást a központi és a 6 regionális laboratórium összesen 9 megyében és a fővárosban mintázza és méri (4-3 ábra).

Az ERMAH laboratóriumok kihullásra vonatkozó mintavételi gyakoriságait és vizsgálati jellemzőit az éves munkaterv írja elő. Az EüÁ ERMAH, és egyéb programjai keretében 2016ban 170 fallout mintát vettek.

2016-ban a NÉBIH laboratóriumai 36 fall-out mintát vettek.

4-5. táblázat
 Kihullás mérési eredmények országos, éves jellemzői 2016-ban (EüÁ és FmÁ)

Radionuklid	Megye	Átlag $\mathbf{m B q} / \mathbf{m}^{2} / \mathbf{n a p}$	Minimum $\mathbf{m B q} / \mathbf{m}^{\mathbf{2} / \mathbf{m a p}}$	Maximum $\mathbf{m B q} / \mathbf{m}^{\mathbf{2} / \mathbf{n a p}}$	Szórás $\mathbf{m B q} / \mathbf{m}^{\mathbf{2} / \mathbf{n a p}}$	\mathbf{N}	Kha
Be-7	BK	2200	1100	5000	1200	12	1
Be-7	BP	2500	450	6200	1500	12	0
Be-7	HA	1900	9,1	4800	1500	11	0
Be-7	NO	-	550	4600	-	8	0
Be-7	PE	-	600	5500	-	4	0
Be-7	TO	2400	830	7000	1500	46	4
Cs-137	BK	-	-	-	-	12	12
Cs-137	BP	-	1,0	1,9	-	25	20
Cs-137	BZ	8,1	2,6	17	3,9	13	0
Cs-137	CS	-	0,033	0,033	-	11	3
Cs-137	GY	-	-	-	-	12	12
Cs-137	HA	7,6	1,1	10	3,3	11	0
Cs-137	NO	-	2,3	2,6	-	8	6
Cs-137	PE	-	5,0	7,0	-	4	2
Cs-137	TO	-	-	0,67	-	57	56
Összes béta	BK	550	130	1000	220	12	0
Összes béta	BP	230	32	710	190	23	0
Összes béta	BZ	79	14	200	55	13	0
Összes béta	CS	250	17	380	130	11	0
Összes béta	GY	250	24	2200	310	48	0
Összes béta	HA	390	150	940	210	12	0
Összes béta	NO	-	170	980	-	8	0
Összes béta	PE	-	280	860	-	4	0
Összes béta	TO	810	69	4300	860	58	0
Be-7	Összesen	$\mathbf{2 4 0 0}$	$\mathbf{9 , 1}$	$\mathbf{7 0 0 0}$	-	$\mathbf{9 3}$	$\mathbf{5}$
Cs-137	Összesen	$\mathbf{4 , 6}$	$\mathbf{0 , 0 3 3}$	$\mathbf{1 7}$	-	$\mathbf{1 5 3}$	$\mathbf{1 1 1}$
Összes béta	Összesen	$\mathbf{4 5 0}$	$\mathbf{1 4}$	$\mathbf{4 3 0 0}$	-	$\mathbf{1 8 9}$	$\mathbf{0}$

A 2016-ban az egyes mintavételi pontokra kapott eredményeket a 4-5. táblázatban foglaltuk össze. A kihullás összes béta-aktivitásainak átlagos értékei az egyes régiókban hasonlóak, kivéve Borsod-Abaúj-Zemplén megyét, ahol az országos átlagnál jóval kisebbek.. Az országos átlag nagyságrendileg egyezik a 2015 évivel. A Cs-137 aktivitása a minták kereken 70%-ában kimutatási határ alatti volt.

4-3. ábra
Kihullás éves maximumainak országos eloszlása 2016-ban
(Eu A és $\mathrm{FmÁ}, \mathrm{mBq} / \mathrm{m}^{2} /$ nap mértékegységben)
Megj: A "-" jelzi, hogy a mérésből az adott megyében nem volt kimutatási határ feletti eredmény)

4.4 Talaj minták mérési eredményei

A talajban található radionuklidok aktivitáskoncentrációit országosan az Egészségügyi Ágazat ERMAH, illetve az Földművelésügyi Ágazat Nemzeti Élelmiszer-lánc Biztonsági Hivatal laboratóriumai mérik.

Az FmÁ NÉBIH laboratóriumainak mintavételi programjában mezőgazdaságilag múvelt talaj (lucerna, sóska) és bolygatatlan talaj (erdei és legelői talaj) vizsgálata szerepelt. 2016ban a 19 megye és Budapest területéröl 282 talajminta vizsgálatát végezték el az FmÁ NÉBIH laboratóriumai-

Az ERMAH laboratóriumok az ország 19 megyéjében és a fővárosban, negyedévente vesznek talajmintát a talaj felső 10 cm vastagságú rétegéből. Az EüÁ ERMAH, és egyéb mérési programjai keretében 2016-ban összesen 244 talajminta vizsgálatát végezték el.

Az ERMAH és az FmÁ NÉBIH laboratóriumok országos mérési eredményeit a 4-4. ábrán mutatjuk be. Az ábra a ${ }^{137} \mathrm{Cs}$, a ${ }^{90} \mathrm{Sr}$ és az összes béta-aktivitáskoncentrációk maximális értékeit szemlélteti az egyes megyékre összegezve. Az FmÁ NÉBIH és az ERMAH programja szolgáltat nuklidszelektív eredményeket (különösen Cs esetén) a legtöbb megyére. A talaj mérési eredmények éves jellemzőit a 4-6. táblázatban foglaltuk össze.

A csernobili kihullásból és a légköri atomfegyver kísérletekből származó ${ }^{137}$ Cs izotóp aktivitáskoncentrációja még mindig jól mérhető, megyénkénti átlagai a 2015. évihez hasonlók voltak, értéktartománya $2,3-39 \mathrm{~Bq} / \mathrm{kg}$ volt, az egyedi eredmények maximuma a $760 \mathrm{~Bq} / \mathrm{kg}$ volt, ez magasabb a tavalyinál. A^{90} Sr izotóp koncentrációinak értékei ennél kisebbek, 1,3-2,1 $\mathrm{Bq} / \mathrm{kg}$ közöttiek voltak. Az összes béta-aktivitáskoncentrációk nagyobbak (430-720 Bq/kg), azonban ez az aktivitás túlnyomórészt a természetes ${ }^{40} \mathrm{~K}$ izotóptól származik.

A talaj ${ }^{137} \mathrm{Cs}$ aktivitáskoncentrációinak országos, éves átlaga $10 \mathrm{~Bq} / \mathrm{kg}$, a ${ }^{90} \mathrm{Sr}$ izotópé ennél kisebb, $1,5 \mathrm{~Bq} / \mathrm{kg}$, a döntöen természetes eredetű összes béta-aktivitásé pedig $570 \mathrm{~Bq} / \mathrm{kg}$ volt 2016-ban. Ezek az eredmények nem térnek el lényegesen, a 2015. éviektől.

4-6. táblázat
Talaj mérési eredmények éves jellemzői (EüÁ és FmÅ)

Radionuklid	Megye	Átlag $\mathrm{Bq} / \mathrm{kg}$	Minimum $\mathrm{Bq} / \mathrm{kg}$	Maximum $\mathrm{Bq} / \mathrm{kg}$	Szórás Bq/kg	N	Kha
Cs-137	BA	8,0	0,46	22	6,7	27	2
Cs-137	BE	-	1,2	7,4	-	7	0
Cs-137	BK	2,3	1,1	15	2,8	55	34
Cs-137	BP	17	2,7	44	12	10	0
Cs-137	BZ	4,5	1,6	9.6	2,7	13	0
Cs-137	CS	4,2	0,46	8,5	2,4	18	0
Cs-137	FE	12	1,5	35	10	21	0
Cs-137	GY	39	4,5	100	18	49	0
Cs-137	HA	-	1,6	5,6	-	7	0
Cs-137	HE	10	1,1	27	7,4	14	1
Cs-137	JA	-	1,7	10	-	4	0
Cs-137	KO	9,6	2,0	36	8,5	24	1
Cs-137	NO	15	2,2	88	17	24	0
Cs-137	PE	8,1	0,16	23	5,7	24	0
Cs-137	SO	6,1	2,5	14	4,1	18	1
Cs-137	SZ	7,3	1,1	53	13	15	0
Cs-137	TO	2,7	2,0	39	5,1	118	96
Cs-137	VA	20	3,2	84	23	20	0
Cs-137	VE	8,7	0,78	17	5,0	20	0
Cs-137	ZA	8,3	0,32	18	5,3	20	1
Sr-90	BA	1,8	0,39	4,8	1,2	17	2
Sr-90	BE	-	1,5	2,1	-	3	0
Sr-90	BK	-	0,47	4,5	-	12	3
Sr-90	BP	-	0,68	2,7	-	5	0
Sr-90	BZ	-	0,60	1,6	-	3	0
Sr-90	CS	-	0,31	5,9	-	9	4
Sr-90	FE	1,7	0,42	4,3	1,1	12	0
Sr-90	GY	-	0,69	4,2	-	11	2
Sr-90	HA	-	-	-	-	1	1
Sr-90	HE	-	0,77	3,8	-	6	1
Sr-90	KO	-	0,69	2,0	-	11	4
Sr-90	NO	1,8	0,74	6,6	1,6	13	2
Sr-90	PE	1,6	0,42	3,7	0,82	16	0
Sr-90	SO	-	0,45	4,2	-	9	2
Sr-90	SZ	-	0,32	1,0	-	5	0
Sr-90	TO	1,3	0,41	2,7	0,77	14	1
Sr-90	VA	1,8	0,90	5,8	1,4	11	1
Sr-90	VE	2,1	0,81	3,9	0,98	11	0
Sr-90	ZA	-	0,50	6,6	-	11	2

(folytatás)

Radionuklid	Megye	Átlag $\mathbf{B q} / \mathbf{k g}$	Minimum $\mathbf{B q} / \mathbf{k g}$	Maximum $\mathbf{B q} / \mathbf{k g}$	$\mathbf{S z o ́ r a ́ s}$ $\mathbf{B q} / \mathbf{k g}$	\mathbf{N}	$\mathbf{K h a}$
Összes béta	BA	650	490	900	100	23	0
Összes béta	BE	-	840	900	-	3	0
Összes béta	BK	480	270	610	100	17	0
Összes béta	BP	500	370	640	110	10	0
Összes béta	BZ	-	560	800	-	8	0
Összes béta	CS	410	270	780	170	14	0
Összes béta	FE	430	280	590	89	17	0
Összes béta	GY	690	500	1000	170	16	0
Összes béta	HA	-	40	320	-	2	0
Összes béta	HE	720	610	830	83	10	0
Összes béta	KO	480	300	730	130	20	0
Összes béta	NO	560	370	780	140	18	0
Összes béta	PE	630	410	930	130	22	0
Összes béta	SO	510	270	720	140	14	0
Összes béta	SZ	630	450	770	100	10	0
Összes béta	TO	470	250	620	110	19	0
Összes béta	VA	710	500	870	110	16	0
Összes béta	VE	620	490	810	86	16	0
Összes béta	ZA	640	510	790	87	16	0
Cs-137	Összesen	10	0,16	100	-	508	136
Sr-90	Összesen	1,5	0,31	6,6	-	180	25
Összes béta	Összesen	570	40	1000	-	271	0

4-4. ábra
Talaj mérési eredmények éves maximumainak országos eloszlása 2016-ban
(EüÁ és FmÁ, Bq/kg mértékegységben)
Megj: A "-" jelzi, hogy a mérésböl az adott megyében nem volt kimutatási határ feletti eredmény)

4.5 Felszíni vizek monitoringja

A felszíni vizek radioaktív szennyeződésének monitorozása kiemelten fontos feladat, hiszen ivóvizünk jelentős részben felszíni vízi eredetű.

A Környezetvédelmi és Vízügyi Ágazat területi kormányhivatalaihoz tartozó laboratóriumok az országos felszíni vízminőségi törzshálózat program keretében mérik a vizek összes béta-aktivitáskoncentrációit. A BAMKH NF LO az MVM Paksi Atomerőmű Zrt. környezet-ellenőrzỏ programjához tartozóan a Duna erőmű feletti és alatti szakaszán a vízmintákból gamma-spektrometriai mérést (${ }^{137} \mathrm{Cs}$), valamint ${ }^{3} \mathrm{H}$ és ${ }^{90} \mathrm{Sr}$ aktivitáskoncentráció meghatározást is végez. A BAMKH NF LO vizsgálja az orvosi alkalmazásból származtatható mesterséges radionuklidok jelenlétét a potenciálisan veszélyeztetett felszíni vizekben $\left({ }^{131} \mathrm{I}\right)$. A 2016-ban mérési programjaik keretében 250 vízminta vizsgálatát végezték el a KvVÁ laboratóriumai.

Az ERMAH mérési program keretében a laboratóriumok megyénként 1-1 mintavételi pontban havonta egy folyóvizet és negyedévente egy állóvizet mintáznak. Az EüÁ ERMAH, és egyéb mérési programjai keretében 2016-ban összesen 634 felszíni vízminta vizsgálatát végezték el. A mintákon összes béta, féléves egyesített mintákon pedig gamma-spektrometriai elemzést végeznek. A ${ }^{137} \mathrm{Cs}$ aktivitáskoncentrációjára vonatkozó jellemző kimutatási határ: 2$20 \mathrm{mBq} / \mathrm{l}$.

Az OKI KI SSFO a Duna-alprogram keretében havi gyakorisággal vesz mintát a Duna vízéből Gönyűnél, Észak-Pesten (Nagy Felszíni Vízmű - NFVM), Budafokon, Pakson és Mohácson, illetve a Szelidi-tóból is történik mintavételezés. A paksi mérések eredményeit a következö alfejezet tartalmazza. A mintákból havonta összes béta-aktivitás, ${ }^{40} \mathrm{~K}$ - és ${ }^{3} \mathrm{H}$ koncentráció mérések, illetve negyedévente ${ }^{90}$ Sr-aktivitáskoncentráció és gammaspektrometriai meghatározások történnek.

A NÉBIH laboratóriumai Baja, Uszód és Gerjen közelében havonta vesznek mintát a Duna vizéből és H -3-meghatározást végeznek belőle, 2016-ban 32 mintát vettek.

A 2016 évben kapott mérési eredményeket a 4-7. táblázatban foglaltuk össze. A Dunában található mesterséges - csernobili eredetủ - radionuklidok koncentrációja alacsony, általában $0,1-20 \mathrm{mBq} / 1$ nagyságrendú. Az összes béta-aktivitáskoncentrációk egy-két kivételtől eltekintve általában nem érik el az $1 \mathrm{~Bq} / 1$ értéket. Az eredmények szóródása jelentős, a maximum és minimum értékek között 1-2 nagyságrend eltérés is lehet.

A KvVÁ pécsi laboratóriuma az orvosi alkalmazás során felszíni vízbe kerülő mesterséges radionuklidok tekintetében Pécsi-vízben mutatott ki ${ }^{131}$ I radioizotópot. Az év során a legmagasabb mért érték $4 \mathrm{~Bq} / \mathrm{l}$ volt, amely nem haladja meg 3012/51 EURATOM irányelv szerinti $0,1 \mathrm{mSv}$ megengedett értékű indikatív dózisból származtatott, az emberi fogyasztásra szánt vízben megengedett $6,2 \mathrm{~Bq} / \mathrm{l}$ értéket. A mért érték megfeleltehető a pécsett működő egészégügyi intézményekből a 15/2001. (VI.6.) KöM. redneletben megengedett kibocsátási korlátoknak.

Egyes felszíni vizek mérési eredményeinek éves jellemzői ($\mathbf{E} \mathfrak{u} A \subset, F m A ̊ e ́ s ~ K v V A ́) ~$

Radionuklid	Víz neve	Átlag $\mathrm{mBq} / 1$	Minimum $\mathrm{mBq} / \mathrm{l}$	$\begin{gathered} \text { Maximum } \\ \mathrm{mBq} / \mathrm{l} \\ \hline \end{gathered}$	Szórás $\mathrm{mBq} / \mathrm{l}$	N	Kha
Cs-137	Által ér	-	-	-	-	3	3
Cs-137	Balaton	-	-	9,0	-	2	1
Cs-137	Cseke tó	-	-	-	-	2	2
Cs-137	Deseda tó	-	-	-	-	2	2
Cs-137	Duna	1,9	0,12	5,9	2,1	57	39
Cs-137	Eger patak	-	-	4,5	-	1	0
Cs-137	Fehér tó	-	1,0	1,0	-	2	0
Cs-137	Fertő tó	-	-	-	-	2	2
Cs-137	Halas-tó	-	-	-	-	2	2
Cs-137	Hámori tó	-	-	9,3	-	1	0
Cs-137	Hármas Körös	-	-	10	-	3	2
Cs-137	Holt Duna-ág	-	-	-	-	6	6
Cs-137	Holt tisza	-	1,5	20	-	5	1
Cs-137	Horgásztó	-	-	-	-	2	2
Cs-137	Horgász-tó	-	1,0	1,0	-	2	0
Cs-137	Kapos	-	-	-	-	2	2
Cs-137	Kondor tó	-	-	-	-	3	3
Cs-137	Körös/Fehér-körös	-	1,0	1,0	-	2	0
Cs-137	Laskóvölgyi víztározó	-	-	9,2	-	1	0
Cs-137	Maros	-	-	10	-	3	2
Cs-137	Orfüi tó	-	-	-	-	2	2
Cs-137	Palotási vizztározó	-	-	14	-	1	0
Cs-137	Rába	-	-	-	-	4	4
Cs-137	Sárvár tó	-	-	-	-	2	2
Cs-137	Séd patak	-	-	-	-	2	2
Cs-137	Szelidi tó	-	-	6,3	-	3	2
Cs-137	Szinva folyó	-	-	4,3	-	1	0
Cs-137	Tisza	-	1,0	10	-	11	3
Cs-137	Vártó	-	1,0	1,0	-	2	0
Cs-137	Vekeri tó	-	15	17	-	3	0
Cs-137	Zagyva	-	-	4,5	-	1	0
Cs-137	Zala	-	-	-	-	2	2
H-3	Börzsöny patak	-	500	1500	-	2	0
H-3	Duna	2100	3,0	8300	1100	163	38
H-3	Kemence patak	-	640	1200	-	2	0
H-3	Köér patak	1600	820	3800	790	12	0
H-3	Letkés patak	-	1200	1300	-	2	0
H-3	Szelidi tó	1200	690	2800	570	11	0
Sr-90	Duna	3,8	0,0051	46	6,5	50	31
Sr-90	Holt Duna-ág	-	-	-	-	4	4
Sr-90	Kondor tó	-	-	6,7	-	4	3
Sr-90	Szelidi tó	-	0,80	7,1	-	8	3
Összes béta	Által ér	230	140	280	43	12	0
Összes béta	Balaton	390	210	2200	350	28	0
Összes béta	Bátaapáti patak	270	140	530	140	12	0
Összes béta	Bódva	210	160	250	27	12	0
Összes béta	Börzsöny patak	-	110	130	-	2	0

(folytatás)

Radionuklid	Víz neve	Átlag $\mathrm{mBq} / \mathrm{l}$	Minimum $\mathrm{mBq} / \mathrm{l}$	$\begin{gathered} \text { Maximum } \\ \mathrm{mBq} / \mathbf{1} \\ \hline \end{gathered}$	Szórás $\mathrm{mBq} / 1$	N	Kha
Összes béta	Cseke tó	-	560	600	-	4	0
Összes béta	Deseda tó	-	130	210	-	4	0
Összes béta	Dráva	220	84	850	280	12	0
Összes béta	Duna	130	23	340	46	221	0
Összes béta	Eger patak	310	190	510	91	12	0
Összes béta	Fehér Körös	-	170	380	-	9	0
Összes béta	Fehér tó	-	320	450	-	4	0
Összes béta	Fertő tó	-	550	840	-	4	0
Összes béta	Halas-tó	-	190	270	-	4	0
Összes béta	Hámori tó	-	22	610	-	4	0
Összes béta	Hármas Körös	-	180	220	-	4	0
Összes béta	Hármas-Körös	140	100	170	25	12	1
Összes béta	Hernád	190	130	250	48	12	0
Összes béta	Holt Duna-ág	180	110	230	38	12	0
Összes béta	Holt tisza	-	200	570	-	5	0
Összes béta	Horgásztó	-	130	150	-	4	0
Összes béta	Horgász-tó	-	170	490	-	4	0
Összes béta	Kapos	290	150	930	160	24	0
Összes béta	Keleti Föcsatorna	150	59	370	86	12	0
Összes béta	Kemence patak	-	73	85	-	2	0
Összes béta	Kondor tó	150	59	260	66	12	0
Összes béta	Köér patak	490	180	840	190	15	0
Összes béta	Körös/Fehér-körös	-	170	180	-	2	0
Összes béta	Lajta	120	60	150	25	12	0
Összes béta	Laskóvölgyi víztározó	-	310	400	-	4	0
Összes béta	Letkés patak	-	250	260	-	2	0
Összes béta	Maros	-	210	270	-	3	0
Összes béta	Nádor-csatorna	380	310	520	67	11	0
Összes béta	Omszki tó	-	370	550	-	4	0
Összes béta	Orfüi tó	-	100	150	-	4	0
Összes béta	Palotási viztározó	-	340	630	-	4	0
Összes béta	Pinka	84	60	130	20	12	0
Összes béta	Rába	140	20	200	34	36	0
Összes béta	Sajó	230	170	300	46	12	0
Összes béta	Sárvár tó	-	120	130	-	4	0
Összes béta	Séd patak	94	80	120	14	12	0
Összes béta	Sió	370	320	420	30	11	0
Összes béta	Szelidi tó	270	130	540	130	23	0
Összes béta	Szinva folyó	110	65	240	47	11	0
Összes béta	Tisza	180	24	530	96	49	1
Összes béta	Vártó	-	210	390	-	4	0
Összes béta	Vekeri tó	-	140	160	-	3	0
Összes béta	Velencei-tó	1700	1200	2500	480	12	0
Összes béta	Zagyva	480	160	720	160	12	0
Összes béta	Zala	150	110	200	28	12	0

4.6 Ivóvíz

4.6.1 Vezetékes ivóvíz és élelmiszeripari technológiai viz

A vezetékes ivóvíz mesterséges eredetű radioaktív szennyeződése nem jellemző, természetes eredetű radioaktív anyag tartalma alacsony. Ugyanakkor, a lakosság sugárterhelése szempontjából az ivóvíz, mint a lakosság által rendszeresen és nagy mennyiségben fogyasztott folyadék monitorozása kiemelten fontos feladat.

Országos vezetékes ivóvíz-ellenőrzési programot az EüÁ ERMAH laboratóriumok végeznek. A mintavételi program megyénkénti negyedéves mintázást ír elỏ az összes bétamérésekhez. Ezenkívül a ${ }^{3} \mathrm{H}$ és ${ }^{90} \mathrm{Sr}$ vizsgálatokhoz évi 2-2 mintát vesznek megyénként. Az EüÁ ERMAH és egyéb mérési programjai keretében 2016-ban összesen 382 vízminta vizsgálatát végezték el.

Az FmÁ NÉBIH laboratóriumai is végeznek ivóvíz - elsősorban élelmiszer előállításhoz használt ivóvíz - méréseket. 2016-ban összesen 55 vízminta vizsgálatát végezték el.

Az ivóvíz aktivitáskoncentrációira kapott maximumok országos eloszlását a 4-5. ábra szemlélteti. Az ivóvízmintákra vonatkozó mérési eredmények további jellemzőit a 4-8. táblázatban foglaltuk össze.

Az összes béta-aktivitások átlagai a $0,1 \mathrm{~Bq} / 1$ érték körüliek, azonban így is jóval az Egészségügyi Világszervezet által ajánlott szint ($1 \mathrm{~Bq} / \mathrm{l}$) alatt maradtak. Az ivóvíz trícium aktivitáskoncentrációi két jellemző csoportba sorolhatók. A felszíni víz eredetű ivóvizeknél az átlagérték hasonló a felszíni vizekéhez, 1-2 Bq / l nagyságú. A mélységi ivóvizek (karszt, artézi) trícium koncentrációi viszont legfeljebb a néhány tized Bq / l értéket érik el.

Az ivóvíz ${ }^{3} \mathrm{H}$ aktivitáskoncentrációinak országos, éves átlaga $2,1 \mathrm{~Bq} / \mathrm{l}$, a legnagyobb érték ($7,1 \mathrm{~Bq} / \mathrm{l}$)) is jóval kisebb mint az ivóvíz minőségi követelményeiről és az ellenőrzés rendjéről szóló 201/2001. (X.25.) Korm. rendeletben európai uniós ajánlás alapján megadott indikátor paraméter ($100 \mathrm{~Bq} / \mathrm{l}$). $\mathrm{A}{ }^{90} \mathrm{Sr}$ koncentrációi $0,00086-0,08 \mathrm{~Bq} / \mathrm{l}$ között vannak, az összes béta-aktivitások átlaga $0,11 \mathrm{~Bq} / 1$, az összes alfa-aktivitások átlaga is $0,11 \mathrm{~Bq} / 1$, míg a ${ }^{137} \mathrm{Cs}$ koncentrációi javarészt kimutatási határ alattiak, értékeik a 0,001 és $0,12 \mathrm{~Bq} / \mathrm{l}$. között találhatók.

4-5. ábra
Ivóvíz mérési eredmények éves maximum értékei
(EüÁ és $\mathrm{FmA}, \mathrm{Bq} / \mathrm{l}$ mértékegységben)
Megj: A "-" jelzi, hogy a mérésböl az adott megyében nem volt kimutatási határ feletti eredmény)

4-8. táblázat
Ivóvíz mérési eredmények éves jellemzői (EüÁ és FmÁ)

Radionuklid	Megye	Átlag Bq/I	Minimum $\mathbf{B q} / \mathbf{l}$	$\underset{\mathbf{B a} / \mathbf{l}}{\text { Maximum }}$	Szórás Bq/I	N	Kha
Cs-137	BA	-	-	-	-	4	4
Cs-137	BE	-	0,0010	0,0010	-	2	0
Cs-137	BK	-	0,0010	0,0063	-	5	2
Cs-137	BP	-	-	-	-	13	13
Cs-137	CS	-	0,0010	0,0010	-	2	0
Cs-137	FE	-	-	-	-	3	3
Cs-137	GY	-	-	0,12	-	5	4
Cs-137	HA	-	0,0055	0,0056	-	4	2
Cs-137	HE	-	-	-	-	1	1
Cs-137	JA	-	-	0,0055	-	3	2
Cs-137	KO	-	-	-	-	5	5
Cs-137	NO	-	-	-	-	1	1
Cs-137	PE	-	-	-	-	5	5
Cs-137	SO	-	-	-	-	5	5
Cs-137	SZ	-	0,0056	0,0057	-	4	2
Cs-137	TO	-	-	0,0020	-	19	18
Cs-137	VA	-	-	-	-	2	2
Cs-137	VE	-	-	-	-	4	4
Cs-137	ZA	-	-	-	-	6	6
H-3	BA	-	1,5	3,3	-	3	1
H-3	BE	-	-	-	-	1	1
H-3	BK	-	-	-	-	2	2
H-3	BP	2,1	1,4	3,2	0,58	11	0
H-3	BZ	-	3,0	7,1	-	4	1
H-3	CS	-	-	-	-	2	2
H-3	FE	-	0,56	4,7	-	2	0
H-3	GY	-	1,7	1,7	-	3	2
H-3	HA	-	-	4,9	-	1	0
H-3	HE	-	3,0	6,5	-	2	0
H-3	JA	-	-	4,9	-	1	0
H-3	KO	-	0,57	4,8	-	7	3
H-3	NO	-	0,66	7,1	-	4	0
H-3	PE	-	3,7	4,3	-	4	2
H-3	SO	-	0,57	3,5	-	2	0
H-3	SZ	-	-	4,3	-	1	0
H-3	TO	0,74	0,31	1,5	0,53	26	8
H-3	VA	-	-	-	-	3	3
H-3	VE	-	-	-	-	2	2
H-3	ZA	-	-	2,8	-	2	1
Sr-90	BA	-	-	-	-	2	2
Sr-90	BK	-	-	-	-	4	4
Sr-90	BP	0,0018	0,00086	0,0027	0,00063	12	1
Sr-90	FE	-	-	0,0057	-	2	1
Sr-90	GY	-	-	0,040	-	2	1
Sr-90	KO	-	-	0,080	-	2	1
Sr-90	SO	-	-	-	-	2	2
Sr-90	TO	-	0,0020	0,0099	-	18	13
Sr-90	VA	-	-	0,030	-	2	1
Sr-90	VE	-	-	-	-	2	2
Sr-90	ZA	-	0,030	0,050	-	2	0

(folytatás)

Radionuklid	Megye	Átlag $\mathbf{B q} / \mathbf{l}$	Minimum $\mathbf{B q /} / \mathbf{l}$	Maximum $\mathbf{B q} / \mathbf{l}$	Szorás $\mathbf{B q} / \mathbf{l}$	\mathbf{N}	Kha
Összes alfa	BA	-	0,042	0,055	-	4	1
Összes alfa	BK	-	-	0,065	-	2	1
Összes alfa	BP	0,088	0,046	0,12	0,018	13	0
Összes alfa	CS	-	-	0,058	-	1	0
Összes alfa	FE	-	0,065	0,078	-	3	1
Összes alfa	GY	-	-	-	-	4	4
Összes alfa	HA	-	0,0030	0,0090	-	6	1
Összes alfa	JA	-	0,0020	0,074	-	5	0
Összes alfa	KO	-	0,085	0,33	-	5	0
Összes alfa	NO	-	-	0,11	-	1	0
Összes alfa	PE	-	0,060	0,34	-	5	0
Összes alfa	SO	-	0,070	0,24	-	5	2
Összes alfa	SZ	-	0,0010	0,0090	-	4	0
Összes alfa	TO	-	0,14	0,89	-	5	3
Összes alfa	VA	-	0,056	0,095	-	3	1
Összes alfa	VE	-	0,065	0,078	-	3	1
Összes alfa	ZA	-	0,050	0,72	-	6	0
Összes béta	BA	-	0,10	0,19	-	6	0
Összes béta	BE	-	0,041	0,060	-	4	0
Összes béta	BK	0,083	0,058	0,14	0,022	15	0
Összes béta	BP	0,11	0,011	0,17	0,039	37	0
Összes béta	BZ	-	0,014	0,025	-	2	0
Összes béta	CS	-	0,075	0,11	-	4	0
Összes béta	FE	-	0,11	0,15	-	5	0
Összes béta	GY	0,11	0,050	0,23	0,038	42	1
Összes béta	HA	0,094	0,016	0,19	0,053	15	0
Összes béta	HE	-	0,16	0,16	-	2	0
Összes béta	JA	0,086	0,0050	0,22	0,066	16	0
Összes béta	KO	0,096	0,050	0,16	0,041	11	1
Összes béta	NO	-	0,054	0,13	-	5	0
Összes béta	PE	-	0,059	0,16	-	5	0
Összes béta	SO	-	0,030	0,15	-	7	0
Összes béta	SZ	0,13	0,015	0,22	0,056	14	0
Összes béta	TO	0,12	0,057	0,90	0,11	62	0
Összes béta	VA	-	0,050	0,13	-	6	0
Összes béta	VE	-	0,050	0,12	-	6	0
Összes béta	ZA	-	0,040	0,19	-	7	0
Css-137	Összesen	0,0065	0,0010	0,12	-	93	79
H-3	Összesen	2,1	0,31	7,1	-	83	28
Sr-90	Összesen	0,0099	0,00086	0,080	-	50	28
Összes alfa	Összesen	0,11	0,0010	0,89	-	75	15
Öszes béta	Összesen	0,11	0,0050	0,90	-	271	2

4.6.2 Palackozott vizek

A palackozott vizek (ásványvizek, tisztított vizek, forrásvizek) hazánkban is erősen emelkedő mértékű fogyasztásuk indokolja radiológiai szempontból történő külön vizsgálatukat. A 2016-ban kapott eredményeket a 4-9. táblázatban foglaltuk össze. Az EüÁ ERMAH mérési programjában a decentrumok megyéiben szerepel negyedévenkénti mintavétel. Az EüA ERMAH és egyéb mintavételi programjai keretében 2016-ban összesen 47 mintán végeztek méréseket. Az FmÁ NÉBIH laboratóriumai is végeznek palackozottvizméréseket. 2016-ban összesen 11 vízminta részletes radioanalitikai vizsgálatát végezték el.

A palackozott vizek átlagos radionuklid tartalma alacsonyabb, mint a felszíni vizekből nyert vezetékes ivóvizeké, mivel jelentős részük ásványvíz.

4-9. táblázat
Palackozott víz mérési eredmények jellemzői (Eüí és FmA)

Radionuklid	Megye	Minimum $\mathbf{B q} / \mathbf{l}$	Maximum $\mathbf{B q} / \mathbf{1}$	\mathbf{N}	Kha
Cs-137	BZ	-	-	1	1
Cs-137	CS	-	0,0010	1	0
Cs-137	FE	-	-	1	1
Cs-137	GY	-	-	3	3
Cs-137	HA	0,022	0,023	4	2
Cs-137	PE	-	-	3	3
Cs-137	TO	-	0,0040	2	1
Cs-137	VE	-	-	2	2
H-3	BK	-	3,9	1	0
H-3	FE	-	-	1	1
H-3	GY	-	-	1	1
H-3	PE	1,1	4,6	3	0
H-3	VE	-	-	2	2
Összes alfa	BK	-	-	1	1
Összes alfa	FE	-	0,37	1	0
Összes alfa	GY	-	0,051	1	0
Összes alfa	PE	0,13	1,1	3	0
Összes béta	BP	0,012	0,67	22	0
Összes béta	BZ	0,034	0,17	5	0
Összes béta	CS	0,069	0,11	4	0
Összes béta	FE	-	0,31	1	0
Összes béta	GY	0,030	0,078	5	1
Összes béta	HA	0,065	0,20	4	0
Összes béta	PE	0,25	0,57	3	0
Összes béta	TO	0,22	0,26	3	0
Összes béta	VE	0,070	0,27	2	0
Cs-137	Összesen	0,0010	0,023	17	13
H-3	Összesen	1,1	4,6	8	4
Összes alfa	Összesen	0,051	1,1	6	1
Összes béta	Összesen	0,012	0,67	49	1

4.7 Növényzet

A talajra, illetve közvetlenül a növényzetre kijutott radionuklidok a táplálékláncon keresztül, az élelmiszerek elfogyasztása révén a lakosság belső sugárterhelését okozzák.

A fejezet mindazon mintákra vonatkozó eredményeket tartalmazza, amelyeket közvetlenül a növényzetből - fü, takarmány, zöldség, gyümölcs -, vagy az utóbbiak feldolgozott, emberi fogyasztásra kész formájából (pl. gabona, liszt) vettek.

4.7.1 Takarmány

A takarmány gyűjtőnév a legelőkről származó füvet, a takarmányozási céllal termesztett növényeket, valamint az egyes adalékokat foglalja magában.

A NÉBIH takarmány mintavételi programja kiterjed a takarmány alapanyagokra, keverékekre és premixekre.

A takarmánymintákra vonatkozó mérési eredmények további jellemzőit az 4-10. táblázatban és a 4.6. ábrán foglaltuk össze. A táblázatból látható, hogy míg a ${ }^{137} \mathrm{Cs}$ aktivitáskoncentrációk jelentős hányada kimutatási határ alatti, addig a ${ }^{90} \mathrm{Sr}$ eredmények nagyobb része meghaladja azt. Ennek oka egyrészt a két mérési módszer eltérő érzékenysége, másrészt a ${ }^{90} \mathrm{Sr}$ aktivitáskoncentrációk jellemzően magasabb szintje.

A talajban és a takarmánynövényekben mért aktivitáskoncentrációkat összehasonlítva ki kell emelni, hogy amíg a talaj esetében a két mesterséges eredetú radionuklidból a ${ }^{137} \mathrm{Cs}$ magasabb koncentrációjú, mint az ${ }^{90} \mathrm{Sr}$, addig a takarmánymintáknál ez éppen fordított. Ennek két lehetséges oka van, egyrészt a ${ }^{90} \mathrm{Sr}$ a legtöbb talajban mobilisabb, a növények számára könnyebben elérhető formában van jelen, másrészt a növények nagyobb mértékben igénylik a kalciumot, amelyet a stroncium képes helyettesíteni. (A két hatás együtt az ún. talaj-növény átviteli tényezővel jellemezhető, amelynek szokásos irodalmi értéke ${ }^{90} \mathrm{Sr}$-ra $10,{ }^{137} \mathrm{Cs}$-ra pedig 1 körüli.)

A takarmánynövények ${ }^{137} \mathrm{Cs}$ aktivitáskoncentrációinak országos, éves átlaga 0,41 $\mathrm{Bq} / \mathrm{kg}, \mathrm{a}{ }^{90} \mathrm{Sr}$-é magasabb, $0,74 \mathrm{~Bq} / \mathrm{kg}$.

4-6. ábra
Takarmány mérési eredmények éves maximumainak országos eloszlása ($\mathbf{E u}$ ía és $\mathbf{F m A ̊ , ~ B q / k g ~ m e ́ r t e ́ k e g y s e ́ g b e n) ~}$
Megj: A "-" jelzi, hogy a mérésből az adott megyében nem volt kimutatási határ feletti eredmény)

4-10. táblázat
Országos takarmány mérési eredmények éves jellemzői (EuiA és FmÁ)

Radionuklid	Megye	Átlag Bq/kg	Minimum Bq/kg	Maximum $\mathrm{Bq} / \mathrm{kg}$	Szórás Bq/kg	N	Kha
Cs-137	BA	-	0,040	0,20	-	31	23
Cs-137	BE	-	0,0010	0,11	-	18	12
Cs-137	BK	-	0,0010	2,6	-	40	32
Cs-137	BP	1,0	0,11	2,3	0,39	57	46
Cs-137	BZ	-	0,11	0,69	-	36	31
Cs-137	CS	-	0,0010	0,0010	-	32	30
Cs-137	FE	-	0,089	0,13	-	21	19
Cs-137	GY	0,59	0,10	4,2	0,62	44	25
Cs-137	HA	.	0,82	1,1	-	4	0
Cs-137	HE	-	0,10	0,58	-	25	21
Cs-137	JA	-	0,11	1,6	-	17	13
Cs-137	KO	-	0,073	0,85	-	33	25
Cs-137	NO	0,28	0,038	1,4	0,30	32	18
Cs-137	PE	0,24	0,039	1,6	0,28	58	37
Cs-137	SO	-	0,050	0,10	-	32	29
Cs-137	SZ	-	0,13	0,96	-	28	21
Cs-137	TO	0,37	0,072	1,3	0,34	49	33
Cs-137	VA	-	0,17	0,24	-	11	9
Cs-137	VE	-	0,15	0,32	-	24	21
Cs-137	ZA	-	0,080	0,42	-	32	24
Sr-90	BA	0,33	0,10	1,4	0,30	22	3
Sr-90	BE	-	0,18	0,27	-	7	5
Sr-90	BK	0,61	0,060	1,8	0,53	35	2
Sr-90	BP	-	0,46	0,67	-	4	1
Sr-90	BZ	1,1	0,14	7,6	1,9	26	5
Sr-90	CS	0,43	0,040	1,7	0,41	22	6
Sr-90	FE	-	0,099	0,65	-	12	3
Sr-90	GY	-	0,090	0,54	-	13	4
Sr-90	HE	1,5	0,050	5,9	1,6	18	0
Sr-90	JA	-	0,070	0,12	-	12	4
Sr-90	KO	0,32	0,13	0,86	0,22	21	5
Sr-90	NO	1,1	0,011	3,3	1,0	22	2
Sr-90	PE	0,86	0,15	2,5	0,87	43	1
Sr-90	SO	0,39	0,050	1,8	0,42	22	1
Sr-90	SZ	1,2	0,13	7,3	1,7	19	0
Sr-90	TO	1,1	0,098	2,6	0,88	36	2
Sr-90	VA	-	-	0,61	-	2	1
Sr-90	VE	0,89	0,10	2,6	0,77	20	3
Sr-90	ZA	0,79	0,14	3,4	0,73	24	0
Összes béta	BA	300	99	1200	310	30	0
Összes béta	BE	280	82	740	210	16	0
Összes béta	BK	270	44	660	180	39	0
Összes béta	BP	-	130	1000	-	7	0
Összes béta	BZ	330	87	730	190	33	0
Összes béta	CS	300	100	1200	250	31	0
Összes béta	FE	390	76	1100	310	20	0

(folytatás)

Radionuklid	Megye	Átlag $\mathbf{B q} / \mathbf{k g}$	Minimum $\mathbf{B q / k g}$	Maximum $\mathbf{B q / k g}$	$\mathbf{S z o r} \mathbf{r a ́ s}$ $\mathbf{B q / k g}$	\mathbf{N}	Kha
Összes béta	GY	570	19	1000	250	45	1
Összes béta	HA	-	210	1400	-	4	0
Összes béta	HE	420	130	1500	370	25	0
Összes béta	JA	170	89	610	160	17	0
Összes béta	KO	370	97	1300	290	32	0
Összes béta	NO	370	32	1100	220	32	0
Összes béta	PE	290	58	760	170	57	0
Összes béta	SO	260	58	1200	280	30	0
Összes béta	SZ	360	64	950	220	25	0
Összes béta	TO	550	130	1300	340	49	0
Összes béta	VA	350	64	780	260	11	0
Összes béta	VE	380	100	1100	260	24	0
Összes béta	ZA	260	62	760	190	32	0
Cs-137	Összesen	0,41	0,0010	4,2	-	624	469
Sr-90	Összesen	0,74	0,011	7,6	-	380	48
Összes béta	Összesen	360	19	1500	-	559	1

A mintákban mérhető összes béta-aktivitás $360 \mathrm{~Bq} / \mathrm{kg}$ volt 2016-ban, mely döntően természetes eredetủ. Ennek igazolására a 4-7. ábrán szemléltetjük a takarmánymintákban mért összes béta és ${ }^{40} \mathrm{~K}$ izotóp aktivitáskoncentrációk közötti korrelációt. Az ábrából látható, hogy takarmánynövényeknél az összes béta-aktivitás több, mint 90%-ban a ${ }^{40} \mathrm{~K}$ radionuklidtól származik.

4-7. ábra
Takarmányminták összes béta és ${ }^{40} \mathrm{~K}$ aktivitáskoncentrációi közötti korreláció (EüÁ és FmÁ)

4.7.2 Növényi eredetű, nyers élelmiszer

A mintáknak ebbe a csoportjába tartoznak mindazon haszonnövények - elsősorban a zöldségfélék -, amelyek közvetlenül, vagy kismértékű előkészítés (mosás, tisztítás) után fogyasztásra kerülnek A zöldség- és gyümölcsfélék aktivitáskoncentrációit az irodalomban leggyakrabban az ún. nyers tömegre vonatkoztatják. A továbbiakban az eredményeket ilyen egységben adjuk meg.

Az FmÁ NÉBIH mérési programja a teljes országot lefedi nuklidszelektív mérési eredményeket szolgáltatva. Az FmÁ NÉBIH laboratóriumainak mintavételi programjában zöldségfélék, gyümölcsök illetve szabadban termő gombák is szerepelnek. 2016-ban a 19 megye és Budapest területéről 444 nyers növényi élelmiszerminta vizsgálatát végezték el az FmÁ NÉBIH laboratóriumai.
2007. évtől a vizsgálati programban szerepel az EU más tagországaiból vagy harmadik országból származó zöldségek, gyümölcsök, füszerek, szárított gombák, aszalt gyümölcsök ${ }^{137} \mathrm{Cs}$ szűrő vizsgálata. 2016-ban 339 ilyen típusú mintát vettek (ezen utóbbi adatok - az eltérő érzékenységủ mérési módszer miatt - az ábrán és a táblázatban nem szerepelnek).

Az ERMAH laboratóriumok mintavételi programja decentrum régiónként és negyedévenként 2-2 zöldségfajtát, valamint az első és negyedik negyedévben 1-1, a második és harmadik negyedévben 2-2 gyümölcsfajtát tartalmaz. Az EüÁ ERMAH, és egyéb mérési programjai keretében 2016-ban összesen 153 zöldség és gyümölcs minta vizsgálatát végezték el.

A növényi eredetủ, nyers élelmiszermintákra vonatkozó mérési eredmények további jellemzőit az 4-11. táblázatban és a 4.8. ábrán foglaltuk össze. A táblázatból látható, hogy a ${ }^{137} \mathrm{Cs}$ aktivitáskoncentrációk nagyrészt kimutatási határ alattiak (kivéve a vadon termő gombákat). A nyers növényi élelmiszerek ${ }^{137} \mathrm{Cs}$ aktivitáskoncentrációinak országos, éves átlaga $0,073 \mathrm{~Bq} / \mathrm{kg}, \mathrm{a}^{90} \mathrm{Sr}$ nuklidé pedig $0,27 \mathrm{~Bq} / \mathrm{kg}$.

4-8. ábra
Nyers, növényi eredetủ élelmiszer mérési eredmények éves maximumainak országos eloszlása ($\mathrm{EüA}$ és $\mathrm{FmÅ}, \mathrm{~Bq} / \mathrm{kg}$ mértékegységben)
Megj.: A "-" jelzi, hogy a mérésből az adott megyében nem volt kimutatási határ feletti eredmény. A gombaminták mérési eredményeit az ábrán nem tüntettuik fel)

4-11. táblázat
Nyers, növényi eredetü élelmiszerek országos mérési eredményeinek éves jellemzői (EüẢ és FmÁ)

Radionuklid	Megye	Átlag Bq/kg	Minimum Bq/kg	Maximum $\mathrm{Bq} / \mathrm{kg}$	Szórás $\mathrm{Bq} / \mathrm{kg}$	N	Kha
Cs-137	BA	-	0,0076	0,050 (* 19)	-	23	18
Cs-137	BE	-	-	0,020	-	23	22
Cs-137	BK	-	-	0,87	-	32	31
Cs-137	BP	-	0,018	0,95	-	22	18
Cs-137	BZ	0,11	0,027	0,13	0,088	35	18
Cs-137	CS	0,037	0,0010	0,0010 (* 0,35)	0,051	31	18
Cs-137	FE	-	0,014	0,12 (* 11)	-	24	15
Cs-137	GY	-	0,015	0,44 (* 10)	-	36	27
Cs-137	HA	0,076	0,059	0,15	0,042	38	22
Cs-137	HE	-	-	- (* 1,6)	-	20	20
Cs-137	JA	-	-	-	-	16	16
Cs-137	KO	-	0,027	0,043 (* 6,2)	-	28	26
Cs-137	NO	0,10	0,025	0,78	0,15	26	15
Cs-137	PE	-	0,027	$0,15(* 1,8)$	-	17	10
Cs-137	SO	-	0,060	0,17(*0,72)	-	19	17
Cs-137	SZ	-	-	-	-	23	23
Cs-137	TO	-	0,020	0,062 (* 0,31)	-	42	37
Cs-137	VA	-	0,022	0,25 (*5,7)	-	22	14
Cs-137	VE	-	-	0,050 (* 0,12)	-	19	18
Cs-137	ZA	-	0,020	0,29	-	19	13
Sr-90	BA	-	0,12	0,29	-	8	1
Sr-90	BE	-	0,050	0,25	-	5	0
Sr-90	BK	0,20	0,077	0,59	0,14	22	7
Sr-90	BP	-	0,061	0,22	-	3	1
Sr-90	BZ	-	0,066	0,92	-	5	0
Sr-90	CS	-	0,030	0,14	-	9	2
Sr-90	FE	-	0,054	0,43	-	8	1
Sr-90	GY	-	0,17	0,23	-	3	0
Sr-90	HA	-	0,22	0,27	-	3	0
Sr-90	HE	-	0,070	1,3	-	4	0
Sr-90	JA	-	-	0,10	-	1	0
Sr-90	KO	-	0,090	0,22	-	6	0
Sr-90	NO	-	0,035	0,79	-	9	0
Sr-90	PE	0,29	0,035	0,70	0,27	15	2
Sr-90	SO	-	0,19	3,4	-	4	0
Sr-90	SZ	-	0,12	0,30	-	4	0
Sr-90	TO	-	0,089	0,26	-	7	0
Sr-90	VA	-	0,049	1,9	-	5	0
Sr-90	VE	-	0,11	0,18	-	6	3
Sr-90	ZA	-	0,090	1,7	-	3	0
Összes béta	BA	92	30	190 (* 330)	46	23	0
Összes béta	BE	72	17	180	42	23	0
Összes béta	BK	120	36	270	57	33	0
Összes béta	BP	55	18	170	33	63	0
Összes béta	BZ	80	26	180	37	32	0

* A megjelölt maximumok vadon termő gombák mintáitól származnak, ezen minták eredményeit az átlag és a szórás számításából, valamint a mintaszámokból kihagytuk
(folytatás)

Radionuklid	Megye	Átlag $\mathbf{B q / k g}$	Minimum $\mathbf{B q} / \mathbf{k g}$	Maximum $\mathbf{B q / k g}$	$\mathbf{S z o ́ r a ́ s}$ $\mathbf{B q} / \mathbf{k g}$	\mathbf{N}	$\mathbf{K h a}$
Összes béta	CS	98	37	310	61	32	0
Összes béta	FE	100	31	240	60	24	0
Összes béta	GY	79	27	220	46	38	0
Összes béta	HA	73	25	200	38	38	0
Összes béta	HE	88	26	240	59	20	0
Összes béta	JA	65	23	99	28	16	0
Összes béta	KO	90	29	170	48	28	0
Összes béta	NO	100	31	250	53	26	0
Összes béta	PE	130	31	220	67	17	0
Összes béta	SO	88	26	220	57	19	0
Összes béta	SZ	95	27	200	50	22	0
Összes béta	TO	92	21	250	56	42	0
Összes béta	VA	96	30	240	54	22	0
Összes béta	VE	110	43	190	46	19	0
Összes béta	ZA	85	26	310	67	19	0
Cs-137	Összesen	0,073	0,0010	$0,95\left(^{*} 19\right)$	-	515	398
Sr-90	Összesen	0,27	0,030	3,4	-	130	17
Összes béta		87	17	$310\left(^{*} 330\right)$	-	556	0

* A megjelölt maximumok vadon termő gombák mintáitól származnak, ezen minták eredményeit az átlag és a szórás számításából, valamint a mintaszámokból kihagytuk

A mintákban mérhető összes béta-aktivitás $87 \mathrm{~Bq} / \mathrm{kg}$ volt 2016 -ban, mely döntően természetes eredetű. Ennek igazolására a 4-9. ábrán szemléltetjük a minták összes béta és ${ }^{40} \mathrm{~K}$ izotóp aktivitáskoncentrációi közötti korrelációt. A korreláció itt is erős, és látható, hogy az összes béta-aktivitás szinte teljes egészét a ${ }^{40} \mathrm{~K}$ aktivitása teszi ki.

4-9. ábra
Nyers, növényi eredetú élelmiszerminták összes béta és ${ }^{40} \mathrm{~K}$ aktivitáskoncentrációi közötti korreláció (EüÁ és Fm Á)

4.7.3 Gabonafélék és azokból készült termékek

A mintacsoportba elsősorban a gabonafélék terményei, illetve ezek feldolgozott formái (liszt, kenyér, pékáru) tartoznak.

Az FmÁ NÉBIH laboratóriumainak monitoring programja ebben az élelmiszercsoportban is lefedi az országot; búza, árpa, kukorica, rozs minták szerepelnek. 2016-ban a 19 megye és Budapest területéről 180 gabonaféle vizsgálatát végezték el az FmÁ NÉBIH laboratóriumai-
2007. évtől szerepel az FmÁ NÉBIH vizsgálati programjában a kenyérfélék, péksütemények ${ }^{137} \mathrm{Cs}$ szűrő vizsgálata is. 2016-ban 372 ilyen típusú mintát vettek (ezen utóbbi adatok - az alacsonyabb érzékenységú mérési módszer miatt - az ábrán és a táblázatban nem szerepelnek).

Az ERMAH laboratóriumok mintavételi programja 5 megyére és a fővárosra terjed ki, negyedévente 1 gabonafajta és havonta 1 kenyérféle mintázását tartalmazza. Az EüÁ ERMAH, és egyéb mintavételi programjai keretében 2016-ban összesen 133 minta vizsgálatát végezték el.

A gabonafélékben és termékekben mért aktivitáskoncentrációk éves, országos értékei az alábbi határok közt mozogtak (4-12. táblázat): $0,001-0,44 \mathrm{~Bq} / \mathrm{kg}\left({ }^{137} \mathrm{Cs}\right) ; 0,032-1,0\left({ }^{90} \mathrm{Sr}\right)$ és $8,0-710 \mathrm{~Bq} / \mathrm{kg}$ (összes béta). Kiemelendỏ, hogy ezen mintafajtákban a csernobili eredetű ${ }^{90} \mathrm{Sr}$ és ${ }^{137} \mathrm{Cs}$ az igen kis kimutatási határok ellenére általában - a minták 50-80 \%-ában - már nem volt kimutatható.

4-10. ábra
Gabonafélék és azokból készült élelmiszer mérési eredmények éves maximumainak országos eloszlása ($\mathrm{E} u \mathrm{~A}$ Ás Fm Á, $\mathrm{Bq} / \mathrm{kg}$ mértékegységben)
Megj.: "-" jelzi, hogy a mérésből az adott megyében nem volt kimutatási határ feletti eredmény.

4-12. táblázat
Gabonafélék és azokból készült élelmiszerek országos mérési eredményeinek éves jellemzői (EüÁ és FinÁ)

Radionuklid	Megye	Átlag Bq/kg	Minimum $\mathbf{B q} / \mathrm{kg}$	$\begin{gathered} \text { Maximum } \\ \mathbf{B q} / \mathbf{k g} \\ \hline \end{gathered}$	Szórás Bq/kg	N	Kha
Cs-137	BA	-	-	0,070	-	9	8
Cs-137	BE	-	-	0,44	-	12	11
Cs-137	BK	-	-	-	-	10	10
Cs-137	BP	-	0,048	0,27	-	25	18
Cs-137	BZ	-	0,037	0,16	-	13	5
Cs-137	CS	-	0,0010	0,030	-	17	10
Cs-137	FE	-	-	-	-	12	12
Cs-137	GY	-	-	-	-	18	18
Cs-137	HA	-	0,080	0,16	-	16	8
Cs-137	HE	-	-	-	-	7	7
Cs-137	JA	-	-	-	-	8	8
Cs-137	KO	-	-	-	-	10	10
Cs-137	NO	-	-	0,052	-	7	6
Cs-137	PE	-	-	0,053	-	10	9
Cs-137	SO	-	-	-	-	8	8
Cs-137	SZ	-	-	-	-	4	4
Cs-137	TO	-	0,030	0,38	-	20	18
Cs-137	VA	-	0,069	0,078	-	16	14
Cs-137	VE	-	-	-	-	9	9
Cs-137	ZA	-	-	-	-	5	5
Sr-90	BA	-	0,075	0,17	-	6	3
$\mathrm{Sr}-90$	BE	-	0,050	0,46	-	11	7
Sr-90	BK	-	0,075	0,39	-	6	2
Sr-90	BZ	-	-	-	-	1	1
Sr-90	CS	-	0,080	0,13	-	7	4
Sr-90	FE	-	0,049	0,10	-	6	3
Sr-90	GY	-	0,14	0,14	-	5	3
Sr-90	HA	-	0,10	0,12	-	4	2
Sr-90	HE	-	0,19	0,30	-	5	2
Sr-90	JA	-	-	-	-	4	4
Sr-90	KO	-	0,070	0,75	-	6	2
Sr-90	NO	-	0,050	0,089	-	7	4
Sr-90	PE	-	0,16	0,41	-	8	5
Sr-90	SO	-	0,040	0,82	-	6	1
Sr-90	SZ	-	0,032	0,29	-	4	2
Sr-90	TO	-	0,033	0,31	-	8	4
Sr-90	VA	-	0,040	0,30	-	9	2
Sr-90	VE	-	0,13	0,20	-	5	3
Sr-90	ZA	-	-	1,0	-	3	2
Összes béta	BA	-	79	160	-	7	0
Összes béta	BE	190	88	490	140	11	0
Összes béta	BK	150	39	480	120	10	0
Összes béta	BP	60	8,0	440	76	40	0
Összes béta	BZ	70	23	200	46	20	0
Összes béta	CS	91	31	250	58	23	0
Összes béta	FE	150	15	510	120	12	0

(folytatás)

Radionuklid	Megye	Átlag $\mathbf{B q / k g}$	Minimum $\mathbf{B q / k g}$	Maximum $\mathbf{B q / k g}$	Szórás $\mathbf{B q / k g}$	\mathbf{N}	Kha
Összes béta	GY	59	26	140	35	25	0
Összes béta	HA	63	22	150	37	23	0
Összes béta	HE	-	91	490	-	7	0
Összes béta	JA	-	65	120	-	7	0
Összes béta	KO	140	24	390	98	10	0
Összes béta	NO	-	76	160	-	7	0
Összes béta	PE	-	46	610	-	9	0
Összes béta	SO	-	75	710	-	8	0
Összes béta	SZ	-	93	240	-	4	0
Összes béta	TO	95	28	710	130	26	0
Összes béta	VA	180	33	600	140	14	0
Összes béta	VE	-	35	210	-	8	0
Összes béta	ZA	-	19	110	-	5	0
Cs-137	Összesen	0,14	0,0010	0,44	-	236	198
Sr-90	Összesen	0,14	0,032	1,0	-	111	56
Összes béta	Összesen	110	8,0	710	-	276	0

Az 4-11. ábrán szemléltetjük a minták összes béta és ${ }^{40} \mathrm{~K}$ izotóp aktivitáskoncentrációi közötti korrelációt. A korreláció itt is jó, és látható, hogy az összes béta-aktivitás nagy részét a ${ }^{40} \mathrm{~K}$ aktivitása teszi ki.

4-11. ábra
Gabonafélék és azokból készült élelmiszerek összes béta és ${ }^{40} \mathrm{~K}$ aktivitáskoncentrációi közötti korreláció (EüÁ és FmÁ)

4.8 Állati eredetű élelmiszerek

Az állati eredetủ élelmiszerek gyűjtőcsoportja a tej- és tejtermékeket, hús- és hústermékeket foglalja magában, azaz együttesen igen fontos táplálékcsoportot képvisel.

4.8.1 Tej, tejtermék

Ezen mintacsoportba a tej és az abból készített élelmiszertermékek (vaj, sajt, túró, tejpor) tartoznak. A tej- és tejtermékminták aktivitáskoncentrációit az irodalomban leggyakrabban az ún. nyers tömegre vonatkoztatják. A továbbiakban az eredményeket ilyen egységben adjuk meg.

Az FmÁ NÉBIH mérési programja a teljes országot lefedi nuklidszelektív mérési eredményeket szolgáltatva. Az FmÁ NÉBIH laboratóriumainak mintavételi programjában tej, sajt illetve tejpor minták szerepelnek. A tej mintavétel havonta, tejgazdaságból vagy kistermelőtől, a takarmány mintavétellel együtt történik. 2016-ban a 19 megye és Budapest területéről 406 tej- és tejtermékminta vizsgảlatát végezték el az FmÁ NÉBIH laboratóriumai.

Az ERMAH laboratóriumok mérési programja 6 megyében és a fővárosban havonta 1-1 tejminta, továbbá negyedévente $1-1$ sajt, túró és tejporminta vételére terjed ki. Az EüÁ ERMAH, és egyéb mintavételi programjainak keretében 2016-ban összesen 278 minta vizsgálatát végezték el.

Megjegyezzük, hogy különösen a tej és tejtermékek - de bizonyos mértékben a többi feldolgozott élelmiszer, pl. hús és hústermékek esetében is -az eredmények adott megyénél történő feltüntetése nem feltétlenül jellemzi a minta származási helyét, gyakran csak a mintavétel helyszínét.

A tej- és tejtermékmintákra vonatkozó mérési eredmények jellemzőit a 4-13. táblázatban foglaltuk össze. A táblázatból látható, hogy míg a ${ }^{137} \mathrm{Cs}$ és ${ }^{90} \mathrm{Sr}$ aktivitáskoncentrációk nagyobb részt kimutatási határ alattiak. (Megjegyezzük, hogy a magasabb koncentrációk - a gyakran nem is hazai elỏállítású - tejporból származnak, amely mintegy tizedrészére hígul a felhasználás során.)

A tej- és tejtermékek ${ }^{137} \mathrm{Cs}$ aktivitáskoncentrációinak országos, éves átlaga $0,17 \mathrm{~Bq} / \mathrm{kg}$, a ${ }^{90} \mathrm{Sr}$ radionuklidé is hasonló, $0,18 \mathrm{~Bq} / \mathrm{kg}$; a döntően természetes eredetű összes béta-aktivitásé pedig $100 \mathrm{~Bq} / \mathrm{kg}$ volt 2016-ban.

4-13. táblázat
Tej és tejtermék mérési eredmények éves jellemzői (EüÁ és FmÁ)

Radionuklid	Megye	Átlag Bq/kg	$\begin{gathered} \text { Minimum } \\ \mathrm{Bq} / \mathrm{kg} \\ \hline \end{gathered}$	$\begin{gathered} \text { Maximum } \\ \mathrm{Bq} / \mathrm{kg} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Szórás } \\ & \text { Bq/kg } \\ & \hline \end{aligned}$	N	Kha
Cs-137	BA	-	0,025	0,61	-	16	12
Cs-137	BE	-	0,21	0,48	-	17	14
Cs-137	BK	-	-	-	-	37	37
Cs-137	BP	-	0,010	0,73	-	13	9
Cs-137	BZ	0,22	0,016	3,3	0,54	37	16
Cs-137	CS	0,081	0,0010	0,049	0,11	27	17
Cs-137	FE	-	0,13	1,4	-	9	4
Cs-137	GY	-	0,018	0,40	-	46	38
Cs-137	HA	0,14	0,051	0,24	0,11	41	18
Cs-137	HE	-	0,21	0,41	.	14	12
Cs-137	JA	-	0,070	0,21	-	22	20
Cs-137	KO	-	-	0,14	-	22	21
Cs-137	NO	-	0,0090	5,8	-	19	10
Cs-137	PE	0,086	0,010	0,86	0,17	37	25
Cs-137	SO	-	-	-	-	21	21
Cs-137	SZ	-	-	-	-	11	11
Cs-137	TO	-	0,010	0,020	-	84	82
Cs-137	VA	-	0,011	2,8	-	14	9
Cs-137	VE	-	0,036	1,5	-	22	18
Cs-137	ZA	-	-	0,26	-	19	18
Sr-90	BA	-	0,019	0,49	-	16	7
Sr-90	BE	-	0,15	0,16	-	17	15
Sr-90	BK	-	0,0070	0,24	-	25	16
Sr-90	BP	-	0,020	0,31	-	13	7
Sr-90	BZ	0,16	0,025	0,65	0,18	18	3
Sr-90	CS	-	0,020	0,12	-	17	13
Sr-90	FE	-	0,041	0,34	-	9	5
Sr-90	GY	-	0,080	2,2	-	42	33
Sr-90	HA	-	0,010	0,42	-	14	8
Sr-90	HE	0,21	0,030	0,75	0,24	13	3
Sr-90	JA	-	-	-	-	21	21
Sr-90	KO	-	0,080	0,21	-	22	20
Sr-90	NO	0,17	0,020	0,62	0,18	19	6
Sr-90	PE	0,088	0,020	0,21	0,10	37	21
Sr-90	SO	0,38	0,020	1,8	0,53	21	3
Sr-90	SZ	-	0,030	2,6	-	11	3
Sr-90	TO	0,11	0,0066	0,89	0,15	53	26
Sr-90	VA	-	-	-	-	14	14
Sr-90	VE	-	0,090	0,42	-	22	16
Sr-90	ZA	0,15	0,030	0,84	0,21	17	4

(folytatás)

Radionuklid	Megye	Atlag $\mathbf{B q} / \mathbf{k g}$	Minimum $\mathbf{B q} / \mathbf{k g}$	Maximum $\mathbf{B q} / \mathbf{k g}$	Szórás $\mathbf{B q} / \mathbf{k g}$	\mathbf{N}	Kha
Összes béta	BA	110	34	530	160	16	0
Összes béta	BE	210	23	480	200	17	0
Összes béta	BK	42	24	51	7,6	33	0
Összes béta	BP	38	5,0	380	62	63	0
Összes béta	BZ	79	28	600	120	41	0
Összes béta	CS	59	25	370	68	44	0
Összes béta	FE	-	26	530	-	9	0
Összes béta	GY	160	17	550	190	60	0
Összes béta	HA	88	22	540	130	45	0
Összes béta	HE	150	25	570	210	13	0
Összes béta	JA	140	20	560	200	22	0
Összes béta	KO	110	21	530	150	22	0
Összes béta	NO	160	23	560	200	19	0
Összes béta	PE	81	29	580	120	37	0
Összes béta	SO	110	24	500	170	21	0
Összes béta	SZ	45	22	52	8,0	11	0
Összes béta	TO	64	21	500	87	90	0
Összes béta	VA	350	49	740	310	14	0
Összes béta	VE	150	26	560	220	22	0
Összes béta	ZA	97	21	470	140	17	0
Cs-137	Összesen	0,17	0,0010	5,8	-	528	412
Sr-90	Összesen	0,18	0,0066	2,6	-	421	244
Összes béta	Összesen	100	5,0	740	-	616	0

4-12. ábra
Tej és tejtermék mérési eredmények éves maximumainak országos eloszlása

Megj: A "-" jelzi, hogy a mérésböl az adott megyében nem volt kimutatási határ feletti eredmény

4.8.2 Hús és hústermékek aktivitáskoncentrációi

Ezen mintacsoportba a húsfélék (baromfi, marha, sertés, vadhús, hal) és az azokból készitett élelmiszertermékek (kolbász, felvágottak) tartoznak. A hús- és hústermék minták aktivitáskoncentrációit az irodalomban leggyakrabban az ún. nyers tömegre vonatkoztatják. A továbbiakban az eredményeket ilyen egységben adjuk meg.

Az FmÁ NÉBIH laboratóriumainak mintavételi programjában sertés, marha, baromfi, házinyúl, hal és vadhús szerepel. 2016-ben a 19 megye és Budapest területéről 333 húsminta vizsgálatát végezték el az FmÁ NÉBIH laboratóriumai.
2007. évtől szerepel az FmÁ NÉBIH monitoring programjában a húskészítmények, tengeri hal és tengeri puhatestűek ${ }^{137}$ Cs szűrő vizsgálata. 2016-ben 177 ilyen típusú mintát vettek (ezen utóbbi adatok - az alacsonyabb érzékenységủ mérési módszer miatt - az ábrán és a táblázatban nem szerepelnek).

Az ERMAH laboratóriumok mérési programja 6 megyében és a fővárosban negyedévente 1-1 marha-, sertés- és baromfi-húsminta vételére terjed ki. Az EüÁ ERMAH, és egyéb mintavételi programjai keretében 2016-ban összesen 121 minta vizsgálatát végezték el.

A hús- és hústermék mintákra vonatkozó mérési eredmények további jellemzőit a 4-14. táblázatban foglaltuk össze. A táblázatból látható, hogy a ${ }^{137} \mathrm{Cs}$ aktivitáskoncentrációk közel háromnegyede itt is kimutatási határ alatti.

A hús és hústermékek ${ }^{137} \mathrm{Cs}$ aktivitáskoncentrációinak országos, éves átlaga $0,13 \mathrm{~Bq} / \mathrm{kg}$.

4-14. táblázat
Hús és hústermék mérési eredmények éves jellemzői (EüÁ és FmÁ)

Radionuklid	Megye	Átlag $\mathbf{B q} / \mathbf{k g}$	Minimum $\mathbf{B q} / \mathbf{k g}$	Maximum $\mathbf{B q} / \mathbf{k g}$	Szórás $\mathbf{B q} / \mathbf{k g}$	\mathbf{N}	$\mathbf{K h a}$
Cs-137	BA	-	-	-	-	7	7
Cs-137	BE	-	-	0,070	-	22	21
Cs-137	BK	-	0,099	0,42	-	37	35
Cs-137	BP	-	0,040	0,10	-	19	15
Cs-137	BZ	0,12	0,034	0,15	0,12	22	4
Cs-137	CS	0,076	0,0010	0,45	0,076	32	22
Cs-137	FE	-	0,10	0,41	-	13	7
Cs-137	GY	-	0,036	0,54	-	10	4
Cs-137	HA	0,10	0,030	0,39	0,061	49	31
Cs-137	HE	-	-	-	-	18	18
Cs-137	JA	-	0,030	0,060	-	10	7
Cs-137	KO	-	-	-	-	10	10
Cs-137	PE	-	-	0,066	-	38	37
Cs-137	SO	0,18	0,060	1,2	0,26	32	19
Cs-137	SZ	-	-	-	-	32	32
Cs-137	TO	-	0,11	0,58	-	14	12
Cs-137	VA	-	0,16	0,26	-	9	7
Cs-137	VE	-	-	0,050	-	11	10
Cs-137	ZA	-	0,060	0,16	-	19	13
Összes béta	BP	58	18	130	40	30	0
Összes béta	BZ	99	48	150	37	14	0
Összes béta	CS	90	43	140	31	14	0
Összes béta	GY	67	13	100	31	14	0
Összes béta	HA	81	38	110	28	14	0
Összes béta	TO	84	37	110	29	14	0
Cs-137	Összesen	0,13	0,0010	1,2	-	404	311
Összes béta	Összesen	76	13	150	-	100	0

A mintákban az átlagos összes béta-aktivitás $76 \mathrm{~Bq} / \mathrm{kg}$ volt 2016-ban, az értékek a 2015 . évihez hasonlók voltak. Ez döntően természetes eredetű (${ }^{40} \mathrm{~K}$), melynek igazolásaként a húsban és hústermékekben mért összes béta és ${ }^{40} \mathrm{~K}$ izotóp aktivitáskoncentrációk közötti korrelációt a 4-14. ábrán szemléltetjük.

4-13. ábra
Hús és hústermék mérési eredmények éves maximumainak országos eloszlása (Eu Á és $\mathrm{FmÁ}, \mathrm{Bq/kg} \mathrm{mértékegységben)}$
Megj.: A "-" jelzi, hogy a mérésböl az adott megyében nem volt kimutatási határ feletti eredmény)

4-14. ábra
Hús és hústermékek összes béta és ${ }^{40} \mathrm{~K}$ aktivitáskoncentrációi közötti korreláció (EüÁ és FmÁ)

4.9 Vegyes élelmiszer

A ,,vegyes élelmiszer" megnevezés a lakosság által közvetlenül fogyasztott (feldolgozott, főtt) ételeket takarja. Az országos ellenőrzési programot az EüÁ ERMAH laboratóriumok végzik. A mintavétel gyakorisága féléves és a régiókra terjed ki. A program összeállításánál cél volt, hogy a vizsgált készétel közétkeztetésből származzon, minél nagyobb lakossági csoport fogyasztását reprezentálja. Az ételmintákat 5 munkanapon (ha megoldható, egy teljes héten keresztül gyűjtik).
Az EüÁ ERMAH mérési programjában a decentrumok megyéiben szerepel félévenkénti mintavétel. Az EüÁ ERMAH és egyéb mintavételi programjai keretében 2016-ban összesen 20 mintát vettek.
A 2016. évi eredményeket a 4-15. táblázatban foglaltuk össze. A táblázatban közölt eredményekből látható, hogy a ${ }^{137} \mathrm{Cs}$ a ${ }^{90} \mathrm{Sr}$ koncentrációk jórésze a kimutatási határ alatt volt és a lakosság által fogyasztott ételekben a csernobili eredetű ${ }^{137} \mathrm{Cs}$ és ${ }^{90} \mathrm{Sr}$ aktivitáskoncentrációja mára jóval a $0,1 \mathrm{~Bq} / \mathrm{kg}$ szint alatt marad.

> 4-15. táblázat

Vegyesélelmiszer-minták mérési eredményeinek éves jellemzői (EüÁ)

Radionuklid	Megye	Átlag $\mathrm{Bq} / \mathrm{kg}$	$\begin{gathered} \text { Minimum } \\ \mathbf{B q} / \mathrm{kg} \\ \hline \end{gathered}$	$\begin{gathered} \text { Maximum } \\ \mathbf{B q} / \mathrm{kg} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Szórás } \\ & \text { Bq/kg } \end{aligned}$	N	Kha
Cs-137	BP	,	-	0,010	B.	2	1
Cs-137	BZ	-	0,026	0,031	-	2	0
Cs-137	CS	-	-	0,0010	-	2	1
Cs-137	GY	-	0,022	0,023	-	2	0
Cs-137	HA	-	0,032	0,043	-	2	0
Cs-137	TO	-	-	-	-	4	4
Sr-90	BP	-	0,027	0,040	-	2	0
Sr-90	GY	-	0,020	0,020	-	2	0
Sr-90	TO	-	-	-	-	4	4
Összes béta	BP	-	32	38	-	2	0
Összes béta	GY	-	-	34	-	1	0
Összes béta	HA	32	13	54	13	13	0
Cs-137	Összesen	-	0,0010	0,043	-	14	6
Sr-90	Összesen	-	0,020	0,040	-		4
Összes béta	Összesen	33	13	54	-	16	0

4.10Egyéb mérések

2016-ban kettő in-situ mérés történt az OKI KI SSFO telephelyének (Budapest, Budafok) udvarán, amelynek eredményeit az 4-16. táblázat tartalmazza.

Emellett in-situ mérések történtek Püspökszilányon és Bátaapátiban, a radioakítvhulladék-tárolók montioring programjában.

4-16. táblázat
Az OKI KI SSFO udvarán végzett in-situ mérések eredményei $\mathrm{a}^{137} \mathrm{Cs}$-re vonatkozó értékek $\mathrm{kBq} / \mathrm{m}^{2}$, a többi érték $\mathrm{Bq} / \mathrm{kg}$ egységben szerepel

Nuklid	2016.04.22.	2016.12.08.
Ac-228	$33,8 \pm 1,4$	$28,9 \pm 1,2$
Tl-208	$36,3 \pm 1,5$	$31,5 \pm 1,6$
$\mathrm{~Pb}-214$	$30,7 \pm 1,5$	$30,4 \pm 1,5$
$\mathrm{Bi}-214$	$30,5 \pm 1,2$	$32,9 \pm 1,3$
$\mathrm{~K}-40$	474 ± 19	415 ± 17
$\mathrm{Cs}-137$	$2,31 \pm 0,12$	$2,06 \pm 0,1$

5 Létesítmények környezete

Az országos mintavételi programon alapuló mérési adatok mellett a mérések másik nagy csoportját jelentik a kiemelt létesítmények környzetének mérési adatai. E fejezetben a létesítményekhez kapcsolódó nukleáris környezetellenőrzés 2016. évi eredményeit mutatjuk be.

5.1 A Paksi Atomerőmú Zrt. környezetében végzett mérések

Az atomerőmű környezetében mérhető sugárzási helyzetről egyrészt az atomerőmủ hatósági felügyelet alatt álló - üzemi monitorozó hálózata, valamint az atomerőmű környezetében végzett hatósági mérések szolgáltatnak információkat.

A jelentésben közöltek megértését szolgálja az erőmű földrajzi elhelyezkedését és a monitorozó állomásokat, valamint a résztvevő hatósági laboratóriumok mintavételi helyeit szemléltető 5.1. és 5-2, ábra. Az erőmű környezeti hatásának elemzéséhez ugyanis a mért eredményeket irány és távolság szerint is célszerű csoportosítani.

5-1. ábra
Az atomerőmű környezeti elhelyezkedése az üzemi monitorozó hálózattal

5-2. ábra
A hatósági mérési és mintavételi helyek
Az OKI KI SSFO (OKK OSSKI) által működtetett digitális adatbázisban tárolt, a létesítmény felügyeletéhez kapcsolódó kibocsátás-ellenőrzési és környezetellenőrzési hatósági mérési adatok száma az utóbbi években 6-7 ezer körül volt, a tervezett érték 3500. A 2016ban a 2015. évihez hasonlóan alakuló meghatározások számának vizsgálati irányok szerinti megoszlását az 5-1. táblázat mutatja. Mivel gamma-spektrometria esetén minden egyes nuklid külön meghatározásnak számít és egy mintának az összes béta, ${ }^{90} \mathrm{Sr}$ stb. aktivitását is mérhetik, az ott feltüntetett összes mérés mintegy 2-3 ezer mintából származik. A nuklidspecifikus eredmények aránya az utóbbi években már a meghatározások jóval több mint kétharmadát, 2016-ben több, mint 80%-át tette ki.

5-1. táblázat
A hatósági meghatározások száma (N) és százalékos megoszlása a fontosabb vizsgálati irányok szerint 2016-ban

Vizsgálati irány	Meghatározások száma $\mathbf{(N)}$	[\%]
Összes béta-aktivitás	1011	14,5
I-131	84	1,2
HpGe det. gamma-spektrometria	4577	65,7
Trícium	391	5,6
Sr-89+Sr-90*	460	6,6
egyéb vizsgálatok	449	6,4
összesen:	6972	100

* kémiai elválasztással

5.1.1 Gamma-dózisteljesítmény mérések a Paksi Atomerőmű környezetében

A Paksi Atomerőmủ környezet-ellenőrző rendszerének részét alkotó dózisteljesítmény-mérő szondákkal mért napi dózisteljesítmények időbeli változását mutatjuk be az 5-3. ábrán. (Az összesen 20 szonda havi átlagolású eredményei az erőmű éves jelentésében megtalálhatók).

5-3. ábra
A Paksi Atomerőmű környezetellenőrzỏ állomásain mért napi dózis-teljesítmények időbeli változása 2016ban

Az 5-3. ábrából láthatóan az egyes állomások idősorainak változásai jól követik egymást. A dózisteljesítményben megfigyelhető csúcsok időjárási eseményekhez - légnyomás nagymértékű változása, esőzések - kötődnek. A legnagyobb és legkisebb dózisteljesítmények között látható különbség oka az állomások környezetének eltérő talajtípusa.

Az erőmủ 30 km sugarú környezetében az OKI KI SSFO a 2012-es évtől méri termolumineszcens dózismérökkel (TLD) a negyedévi integrált dózist. Az országos TLD méréseken felül a PAE környékén az OKI KI SSFO egy 39 mérési helyszínből álló passzív mérőhálózatot is müködtet a környezeti gamma-dózisteljesítmény mérésére. A mérőhálózat mérési helyszíneire negyedévente küldik ki a TL detektorokat postán vagy személyesen cserélik, így minden detektor negyedéves expozíciós időszak után kerül vissza hozzánk. A detektorokat a szabadban kerülnek kihelyezésre. A mérési pontok elhelyezkedését és a mérési eredményeket az 5-4. ábra, illetve az 5-2. táblázat mutatja. A mérési eredményeket levegöben elnyelt dózisban kifejezve $\left(D_{a}\right)$ adtuk meg, az értékek jellemző hibája 5% körüli. Néhány esetben a doziméterek elvesztek, a táblázatban ezen eredmények helye üresen maradt.

Az átlagértékek - a természetes ingadozásokat figyelembe véve - jól egyeznek a korábbi éviekkel. (Az erőmű által a becslések alapján okozott igen kis dózisteljesítmény növekmény ezzel a módszerrel nem mutatható ki.)

5-2. táblázat
A Paks környéki TLD mérések 2016. évi eredményei

Település	Dózisteljesítmény ($\mathrm{nGy/h}$)			
	1. negyedév	2. negyedév	3. negyedév	4. negyedév
Bátya	79,7	77,7	76,0	85,6
Bogyiszló	85,9	81,3	88,8	94,1
Borsócséplői út	58,8	48,7	58,2	65,6
Csámpa vízmű	63,9	53,9	67,1	67,1
Császártöltés	80,9	73,5	71,4	84,5
PAE Déli bekötơút	60,1	51,4	62,2	65,5
Dunaföldvár	59,8	52,2	57,0	65,0
Dunakömlöd	92,4	84,7	90,3	105,4
Dunapataj	-	-	71,8	79,1
Dunaszentbenedek	65,5	63,3	68,3	75,6
Dunaszentgyörgy 1.	-	61,9	62,2	66,4
Dunaszentgyörgy II.	74,7	69,9	69,5	85,1
Dusnok	77,8	67,9	72,8	82,9
PAE Északi bekötöút	53,1	49,9	-	57,8
Fajsz	86, 1	75,6	78,0	89,0
Foktỏ I.	70,8	62,4	78,9	78,3
Foktő II.	88,0	74,7	85,4	99,2
Földespuszta	66,4	59,9	64,6	76,0
Géderlak	69,7	65,6	66,7	77,0
Hajós	79,5	69,3	73,5	85,1
Kalocsa	72,5	60,2	70,9	66,5
Kecel	81,9	72,8	76,3	86,5
Kiskörös	59,3	52,4	57,3	65,5
Kölesd	92,0	88,5	89,4	94,7
Löszdomb	57,4	48,3	54,4	61,7
Miske	99,0	93,2	92,5	107,1
Nagydorog	83,9	81,7	87,2	96,4
Németkér	81,0	74,4	76,2	84,5
Öregcsertő	77,4	70,9	75,9	85,6
Paks	101,0	93,4	99,2	15,3
Simontornya	84,8	82,5	89,7	95,8
Szakmár	78,1	67,6	67,2	79,5
Szekszárd	77,0	64,1	69,1	75,8
Tengelic I.	62,4	55,2	55,9	66,9
Tengelic II.	82,9	75,6	77,3	87,3
Uszód	71,1	62,9	66,3	71,3
Uszód	72,3	-	77,7	68,5
Úzd reléállomás	76,7	60,3	62,3	76,4
Zomba	115,9	98,7	96,6	120,8
Vizsgálatok száma	37	39	38	39
Átlagos dózisteljesítmény	76,7	73,8	73,8	79,2

5.1.2 Aeroszol aktivitás-koncentráció mérések a Paksi Atomerőmű környezetében

A Paksi Atomerőmű A-típusú állomásain elvégzett aeroszol mérések eredményeit összegzi a 5-3. táblázat. A mintavétel nagy légforgalmú mintavevővel történik, ennek ellenére a szűrőkön a 2016. évben nem tudtak kimutatni atomerőművi eredetű izotópot (a radionuklidtól függő kimutatási határok értéke I-131 izotópra 3, Cs-134 izotópra 15, míg Cs-137 izotópra 20
$\mu \mathrm{Bq} / \mathrm{m}^{3}$ közötti). A mért ${ }^{7} \mathrm{Be}$ radioizotóp természetes eredetű, koncentrációja jól egyezik más laboratóriumok eredményeivel.

5-3. táblázat
A Paksi Atomerőmű környezetében végzett aeroszol mérések eredményeinek éves összefoglalása

Radionuklid	Átlag $\mathbf{m B q} / \mathbf{m}^{\mathbf{3}}$	Minimum $\mathbf{m B q} / \mathbf{m}^{\mathbf{3}}$	Maximum $\mathbf{m B q} / \mathbf{m}^{\mathbf{3}}$	${\text { Szórás } \mathbf{m B q} / \mathbf{m}^{\mathbf{3}}}^{\text {K }}$	\mathbf{N}	$\mathbf{K h a}$
$\mathrm{Be}-7$	3,9	0,9	9,1	1,8	516	0
$\mathrm{Co}-60$	-	-	-	-	516	516
$\mathrm{Cs}-134$	-	-	-	-	516	516
$\mathrm{Cs}-137$	-	-	-	-	516	516
$[-131$	-	-	-	-	516	516

A légkör radioaktív szennyezettségének ellenőrzésére a Tolna Megyei Kormányhivatal környezeti sugár-egészségügyi laboratóriuma - négy ponton: Kalocsa, Csámpa, Szekszárd, Dunaföldvár - tart üzemben folyamatos mintavevő berendezést. Az aeroszol szűrőket Szekszárdon 24 órás és 1-2 hetes (összes béta, ill. gamma-spektrometriai mérésekhez), a többi állomáson heti gyűjtéssel veszik, majd 72 órás pihentetés után mérik. Ezeknek az adatoknak egy része az országos kimutatásban is szerepel. Az aeroszol szürőkben mért összes bétaaktivitás $0,57-4,9 \mathrm{mBq} / \mathrm{m}^{3}$ között változott (5-4. táblázat). A teljes kihullást reprezentáló fall-out mintákban mért összes béta-aktivitás $9,1-130 \mathrm{~Bq} / \mathrm{m}^{2} /$ hó értékhatárok között volt. A magasabb értékek döntő részben a ${ }^{40} \mathrm{~K}$ izotóptól származnak.

5-4. táblázat

A levegökörnyezetben mért radioaktív koncentrációk (aeroszol) a hatósági mérésekből (EüÁ), mBq/m ${ }^{3}$

Meghatározás	Terület * Aitlag min.-max.; esetszám**	
Összes béta	ÉNY-i félkör, $\mathrm{R}<10 \mathrm{~km}$	1,6
Összes béta	ÉNY-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$0,78-2,1 ; 52(35)$
Összes béta	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$0,57-4,9 ; 51(39)$
Be-7 (Gamma spektr.)	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	1,5
Cs-134 (Gamma spektr.)	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$0,91-2,6 ; 52(36)$
Cs-137 (Gamma spektr.)	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$1,0-7,7 ; 47$
I-131 (Gamma spektr.)	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	0,00054
Pb-210 (Gamma spektr.)	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$0,00023-0,00096 ; 47(47)$

* Itt és a következö hasonló táblázatokban a félkörök és távolságok jelentése leolvasható a 5.2-es ábráról.
** Az esetszámok után zárójelben a kimutatási határ alatti értékek száma szerepel, az átlag képzésénél ezeket a kimutatási határral vettük figyelembe

Gamma-spektrometriai mérésekkel a közepes légtérfogatú aeroszol-mintavevő szűrőin a korábbi évekhez hasonlóan 2016-ben nem volt kimutatható a ${ }^{137} \mathrm{Cs}$.

5.1.3 A Paksi Atomerőmű környezet-ellenörző rendszerének kihullás mérési eredményei

Az üzemi méréseket az ún. A-típusú ellenőrzỏ állomásokon végezték. A kihullásban jól mérhető volt - az EüÁ laboratóriumának eredményeihez hasonló nagyságban - a kozmogén eredetủ ${ }^{7}$ Be. Atomerőművi eredetű radionuklid 2016-ban nem volt kimutatható a fall-out mintákban.(5-5. táblázat). A radionuklidtól függő kimutatási határok értéke I-131 izotópra 2,0, Cs-134 izotópra 0,4, míg Cs-137 izotópra $0,4 \mathrm{~Bq} / \mathrm{m}^{2} /$ hó közötti.

5-5. táblázat

A levegökörnyezetben mért teljes kihullás koncentrációk hatósági mérésekből (EiiÁ)

Meghatározás	Terület *	Átlag (Bq/m²/hó) min.-max.; esetszám
Összes béta	ÉNY-i félkör, $\mathrm{R}<10 \mathrm{~km}$	15
Összes béta	ÉNY-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$9,1-28 ; 11$
Összes béta	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$13-37 ; 11$
Be-7 (Gamma spektr.)	ÉNY-i félkör, $\mathrm{R}<10 \mathrm{~km}$	40
Be-7 (Gamma spektr.)	ÉNY-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$9,2-130 ; 21$
Be-7 (Gamma spektr.)	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$35-180 ; 11$
Cs-137 (Gamma spektr.)	ÉNY-i félkör, $\mathrm{R}<10 \mathrm{~km}$	75
Cs-137 (Gamma spektr.)	ÉNY-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$25-190 ; 10$
Cs-137 (Gamma spektr.)	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$33-150 ; 22$

* Itt és a következő hasonló táblázatokban a félkörök és távolságok jelentése leolvasható a 5.2-es ábráról.
** Az esetszámok után zárójelben a kimutatási határ alatti értékek száma szerepel, az átlag képzésénél ezeket a kimutatási határral vettük figyelembe

5-6. táblázat
A levegőkörnyezetben mért aktivitás-koncentrációk jellemző értéktartománya, üzemi mérésekből [13].

Radionuklid	Átlag $\mathrm{Bq} / \mathrm{m}^{2} / \mathrm{hó}$	Minimum $\mathrm{Bq} / \mathrm{m}^{2} / \mathrm{hó}$	Maximum $\mathrm{Bq} / \mathrm{m}^{2} / \mathrm{hó}$	Szórás $\mathrm{Bq} / \mathrm{m}^{2} / \mathrm{hó}$	\mathbf{N}	Kha
$\mathrm{Be}-7$	93	6,7	395	70	108	3,5

5.1.4 A Paksi Atomerőmű hideg és megegvízcsatornájában mért aktivitáskoncentrációk

Az erőmű környezet-ellenőrzési programja keretében rendszeresen méri a hidegvíz- (V1) és melegvízcsatorna (V2) vizének aktivitáskoncentrációit. Az összes béta-aktivitások havi átlagait a 5-5. ábrán mutatjuk be (az összes bétamérések jellemző energiája 100 és 1000 keV közötti). A hidegvízcsatorna vizének aktivitáskoncentrációja meg kell hogy egyezzen a Dunáéval, a melegvízcsatornánál sem várható lényeges emelkedés. Az 5-5. ábrán a
melegvízcsatorna vizének havi átlag értékei mérési hibahatáron (kb. 25%-on) belüli jó egyezést mutatnak a hidegvízcsatorna hasonló értékeivel.

5-5. ábra
A Paksi Atomerőmủ hideg- és melegvízcsatornájában mért összes béta-aktivitáskoncentrációk

5.1.5 Az OKI KI SSFO mérési adatai Paks felszíni vizekre vonatkozóan

Az OKI KI SSFO a Duna alprogram keretében havi gyakorisággal vesz mintát a Duna vízéből Paksnál, illetve a paksi kollégák segítségével az M5 és T24 figyelőkutakból, valamint a V2 melegvizes csatornából. A mintákból havonta összes béta-aktivitás, ${ }^{40} \mathrm{~K}$ - és ${ }^{3} \mathrm{H}$-koncentráció mérések, illetve negyedévente ${ }^{90} \mathrm{Sr}$-aktivitáskoncentráció és gamma-spektrometriai meghatározások történnek. A minta-előkészités a gamma-spektrometriai elemzés esetén bepárlást (45 literről 150 ml -re), az összes béta-aktivitás mérés esetén bepárlást és $380^{\circ} \mathrm{C}$-on történő hamvasztást, ${ }^{90} \mathrm{Sr}$-aktivitáskoncentráció mérése esetén további kémiai elválasztást jelent. A trícium méréseket elektrolitikus dúsítás előzi meg, a ${ }^{40} \mathrm{~K}$ koncentrációt atomabszorpciós spektrofotométerrel mérik. $\mathrm{A}{ }^{137} \mathrm{Cs}$ aktivitáskoncentrációja minden esetben kimutatási határ alatti volt. A mérési eredményeket a 5-7. táblázat tartalmazza.

5-7. táblázat

A Duna paksi szakaszán és a PAE M5, T24 jelủ figyelû kútjaiból, valamint a melegvizes csatornából (V2)
vett vízminták aktivitása (OKI KI SSFO)

Radionuklid	Mintavétel helye	Åtlag	Minimum	Maximum	Szórás	N	Kha	Egység
Sr-90	Paks	-	1,6	1,7	-	2	0	$\mathrm{mBq} / \mathrm{l}$
Sr-90	V2	-	0,5	1,8	-	2	0	$\mathrm{mBq} / \mathrm{l}$
H-3	M5	37,0	11,4	96,2	22,2	12	0	$\mathrm{~Bq} / \mathrm{l}$
H-3	T24	22,0	13,6	27,8	4,1	12	0	$\mathrm{~Bq} / \mathrm{l}$
H-3	V2	1,95	1,34	3,05	0,58	12	0	$\mathrm{~Bq} / \mathrm{l}$
K-40	Paks	82,4	59,4	105	13,0	12	0	$\mathrm{mBq} / \mathrm{l}$

5.1.6 A Paksi Atomerőmű környezetében vett halminták mérési eredményei

A Paksi Atomerőmủ környezetében a KvVÁ környezetvédelmi hatáskörében eljáró BAMKH NF LO végzi a halak mintázását és mérését az erőmű alattí Duna-szakaszon. A dunai halakra, az erőmű alatti szakaszon kapott mérési eredményeket a 5-8. táblázatban foglaltuk össze.
Látható, hogy a mesterséges radionuklidok halakban mért koncentrációi - a szárazföldi tápláléklánc elemeihez hasonlóan - igen kicsik, a minták nagyobb részében kimutatási határ alattiak.

A halakban mért összes béta és ${ }^{40} \mathrm{~K}$ izotóp aktivitáskoncentrációk közötti korrelációt az 5-6. ábrán szemléltetjük, a korreláció elég erős, a tavalyi évhez hasonlóan, annak ellenére, hogy a halak - a szárazföldi állatoktól eltérően - koncentrálnak egyes fémeket, valamint a ${ }^{40} \mathrm{~K}$ izotópon kívül más bétasugárzó, többnyire természetes eredetű radioaktív izotóp is hozzájárul az összes béta-eredményekhez.
5-8. táblázat

A Paksi Atomerőmű utáni Duna-szakaszon fogott halak mérési eredményeinek éves jellemzői (KıVÁ)

Radionuklid	Átlag Bq/kg	Minimum $\mathbf{B q / k g}$	Maximum $\mathbf{B q / k g}$	Szórás $\mathbf{B q / k g}$	\mathbf{N}	Kha
Cs-137	0,17	0,030	0,43	0,12	23	8
Sr-90	-	-	1,5	-	23	22
K-40	84	59	$100 ;$	$? ? ?$	23	0
Összes béta	81	56	110	13	23	0

5-6. ábra
Halak összes béta és ${ }^{40} \mathrm{~K}$ aktivitáskoncentrációi közötti összefüggés (KvVÁ)

5.1.7 A vízi környezetben mért aktivitáskoncentrációk a hatósági mérések alapján

A hatósági laboratóriumok különös figyelmet fordítanak a Duna - elsősorban az erőmű utáni szakasza - radioaktív szennyezettségének rendszeres ellenörzésére. A KvVÁ pécsi és az EüÁ szekszárdi laboratóriuma a folyó Dunaföldvártól Mohácsig terjedő szakaszán több ponton - Dunaföldvár, Paks, Gerjen, Kalocsa, Baja, Mohács - végez rendszeres mintavételt és mérést.

A hatóság feladatköre ezen kívül az erőmű környezetében fekvő felszíni vizek -Szelidi-tó, Kondor-tó, Dombori telepi Holt-Duna-ág - rendszeres ellenőrzésére is kiterjed, ezt az EüÁ laboratóriuma végzi. (A Szelidi-tónál a KvVÁ laboratórium is végez mintavételezést és mérést.)

A vizsgálatok elsősorban a víz-, szedimentum-, alga- és halminták aktivitáskoncentrációinak mérésére irányulnak.

A heti-havi gyakorisággal vett Duna-víz mintákban meghatározott összes béta-aktivitáskoncentrációkat a 5-7. ábra, a hetente-havonta mért trícium-koncentráció értékeket pedig a 58. ábra szemlélteti a környezetvédelmi és az egészségügyi hatóság mérései alapján. A nagyszámú vízmintából meghatározott összes béta-aktivitások éves átlaga $0,15 \mathrm{~Bq} / \mathrm{l}$ volt Paks előtt és $0,13 \mathrm{~Bq} / \mathrm{l}$ Paks után.

A trícium-koncentráció értékeket tartalmazó 5-8. ábra és 5-9. táblázat szerint a Paks előtt és után vett vízmintákban mért ${ }^{3} \mathrm{H}$ aktivitáskoncentrációk a korábbi évekhez hasonlóak, nincs szignifikáns különbség az erőmű előtt és után gyűjtött mintákat tekintve. A vizsgálati pontokon a Duna szakasz trícium-koncentrációja Paks elő̋t és Paks után átlagosan 2,3 ill. 2,4 $\mathrm{Bq} / 1$ volt.

A már említett összes béta-aktivitás és trícium-koncentráció mellett az 5-9. táblázat tartalmazza a Duna-víz ${ }^{90} \mathrm{Sr}$ és ${ }^{137} \mathrm{Cs}$, valamint a KvVÁ laboratóriumában, gammaspektrometriával mért radionuklidok átlagos aktivitáskoncentrációit is.

A Duna-vízben egyetlen radionuklid átlagos aktivitáskoncentrációja sem haladja meg lényegesen az alapszint értékeket és általában a Paks után mért értékek nem magasabbak a Paks elött mért értékeknél.

Összességében megállapíthatjuk, hogy a Duna vizében az erőmű utáni szakaszon erőműi eredetű lényeges radioaktív szennyeződés 2016-ban sem volt kimutatható.

5-7. ábra
A dunavíz havi összes béta aktivitáskoncentrációja Paks elő́tt és után mérve (hatósági mérések)

A dunaviz havi trícium-koncentrációja Paks előtt és után mérve (hatósági mérések)

5-9. táblázat
A Duna-vízben mért éves aktivitás-koncentráció értékek, hatósági mérések alapján (EüÁ és KvVẢ)

Meghatározás	Terület	Átlag (Bq / I) min.-max.; esetszám*	$\begin{gathered} \text { alapszint (Bq/I) } \\ (1981) \end{gathered}$
Összes béta	Paks elött	$\begin{gathered} 0,15 \\ 0,067-0,22 ; 36 \end{gathered}$	0,2
	Paks után	$\begin{gathered} 0,13 \\ 0,023-0,26 ; 74 \end{gathered}$	
Cs-137 (gamma-spektr.)	Paks elött	$\begin{gathered} 0,0034 \\ 0,00019-0,0058 ; 12(10) \end{gathered}$	
	Paks után	$\begin{gathered} 0,0013 \\ 0,00012-0,0059 ; 37(24) \end{gathered}$	
K-40 (gamma-spektr.)	Paks elött	$\begin{gathered} 0,12 \\ 0,085-0,19 ; 5 \end{gathered}$	
	Paks után	$\begin{gathered} 0,055 \\ 0,0026-0,11 ; 30(1) \end{gathered}$	
H-3	Paks előtt	$\begin{gathered} 2,2 \\ 1,0-3,9 ; 24(6) \end{gathered}$	7,00
	Paks után	$\begin{gathered} 2,3 \\ 0,0030-5,4 ; 49(23) \end{gathered}$	
Sr-90	Paks előtt	$\begin{gathered} 0,011 \\ 0,0057-0,046 ; 8(8) \end{gathered}$	0,005
	Paks után	$\begin{gathered} \hline 0,0024 \\ 0,00038-0,0063 ; 23(22) \end{gathered}$	

* az esetszámok után zárójelben a kimutatási határ alatti értékek száma szerepel, az átlag képzésénél ezeket a kimutatási határral vettük figyelembe

Az 5-10. táblázat az erőmű környezetében fekvő felszíni vizek (kivéve a Dunát) mérési eredményeit tartalmazza. A vizsgálati eredmények azt mutatják, hogy a vizek összes béta aktivitás-koncentrációja hasonló a Duna-vízben mért értékekhez, havi átlagértékei a 0,059 $0,54 \mathrm{~Bq} / \mathrm{l}$ határok között voltak.

5-10. táblázat
Felszíni vízminták (kivéve Duna) radioaktív koncentrációinak éves átlagai, hatósági mérések alapján (EüÁ és KvVÁ)

Meghatározás	Terület	$\begin{gathered} \text { Átlag (Bq/l) } \\ \text { min.-max.; esetszám* } \end{gathered}$
Összes béta	DK-i félkör, $\mathrm{R}<10 \mathrm{~km}$	$\begin{gathered} 0,15 \\ 0,059-0,26 ; 12 \end{gathered}$
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 0,26 \\ 0,11-0,54 ; 24 \end{gathered}$
Cs-137 (gamma-spektr.)	DK-i félkör, $\mathrm{R}<10 \mathrm{~km}$	$\begin{gathered} 0,0056 \\ 0,0055-0,0065 ; 3(3) \end{gathered}$
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 0,0056 \\ 0,0052-0,0063 ; 7(7) \end{gathered}$
H-3	DK-i félkör, $\mathrm{R}<10 \mathrm{~km}$	$\begin{gathered} 2,1 \\ 0,90-4,4 ; 12(5) \end{gathered}$
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 2,5 \\ 0,90-8,3 ; 20(5) \end{gathered}$
Sr-90	DK-i félkör, $\mathrm{R}<10 \mathrm{~km}$	$\begin{gathered} 0,0061 \\ 0,0058-0,0067 ; 4(4) \end{gathered}$
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 0,0065 \\ 0,0059-0,0071 ; 8(7) \end{gathered}$

* az esetszámok után zárójelben a kimutatási határ alatti értékek száma szerepel, az átlag képzésénél ezeket a kimutatási határral vettük figyelembe

A Duna üledékéből Paks előtt és Paks után havonta-negyedévente gyűjtött minták átlagos koncentrációit a KvVÁ és EüÁ adatai alapján a 5-11. táblázat tartalmazza.

A Duna-iszap összes béta-aktivitása a mintázott helyeken $540-1100 \mathrm{~Bq} / \mathrm{kg}$ közötti érték volt (száraz tömegre vonatkoztatva). $\mathrm{A}{ }^{90} \mathrm{Sr}$ átlagos aktivitáskoncentrációja a mérések alapján Paks után $2,1 \mathrm{~Bq} / \mathrm{kg}$ volt. Ezek az értékek hasonlóak a korábbi évekhez.

A gamma-spektrometriai mérések azt mutatják, hogy a Duna üledékében a $10 \mathrm{~Bq} / \mathrm{kg}$ alapszintet meghaladó mértékben továbbra is jelen van a csernobili baleset következtében kihullott ${ }^{137} \mathrm{Cs}$. Ebben az évben a ${ }^{137} \mathrm{Cs}$ koncentráció $0,51-35 \mathrm{~Bq} / \mathrm{kg}$ közötti volt a vizsgált szedimentum-mintákban, ez hasonló az előző években mért értékekhez, azonban a mért koncentrációk két nagyságrenden belüli változása a mintavétel, illetve a mintázandó közeg bizonytalanságát mutatja. A Paks utáni átlag és maximum a Paks előttihez hasonló volt.

A dunai üledék éves mérési eredményei hatósági mérésekből (EüÁ és KvVÁ)

Meghatározás	Terület	Átlag (Bq/kg) min.-max.; esetszám*	alapszint (1981)
Összes béta	Paks előtt	$\begin{gathered} 930 \\ 850-980 ; 6 \end{gathered}$	
	Paks után	$\begin{gathered} 890 \\ 540-1100 ; 57 \end{gathered}$	
Cs-134 (gamma-spekt.)	Paks előtt	$\begin{gathered} 0,64 \\ 0,22-1,5 \quad 16(16) \end{gathered}$	
	Paks után	$\begin{gathered} 0,54 \\ 0,20-0,91 \quad 23(23) \end{gathered}$	
Cs-137 (gamma-spektr.)	Paks elött	$\begin{gathered} 7,4 \\ 0,60-35 ; 22(16) \end{gathered}$	10,0
	Paks után	$\begin{gathered} 17 \\ 0.51-35 ; 79(23) \end{gathered}$	
K-40 (gamma-spektr.)	Paks elött	$\begin{gathered} 400 \\ 180-670 ; 22 \end{gathered}$	
	Paks után	$\begin{gathered} 510 \\ 210-750 ; 80 \\ \hline \end{gathered}$	
Sr-90	Paks után	$\begin{gathered} 2,1 \\ 1,2-3,0 ; 54(54) \end{gathered}$	2,0

* az esetszámok után zárójelben a kimutatási határ alatti értékek száma szerepel, az átlag képzésénél ezeket a kimutatási határral vettük figyelembe

Az 5-12. táblázat a hatósági laboratóriumok (EüÁ és KvVÁ) által vizsgált állóvizek szedimentumában meghatározott aktivitáskoncentráció értékeket tartalmazza. A minták szennyezettségét gamma-spektrometriával mérték, a ${ }^{137} \mathrm{Cs}$ koncentrációjának átlagértéke a dunainál kisebb, $1,1 \mathrm{~Bq} / \mathrm{kg}$ volt.

5-12. táblázat
Felszíni vizek (a Duna kivételével) üledékének aktivitáskoncentrációinak éves átlagai a hatósági mérések alapján (EüÁ és KvVÁ)

Meghatározás	Terület	Átlag (Bq/kg sz.a.) min.-max.; esetszám*
Cs-134 (gamma-spektr.)	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	0,56
Cs-137 (gamma-spektr.)	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$0,22-0,90 ; 24(24)$
K-40 (gamma-spektr.)	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	1,1

* az esetszámok után zárójelben a kimutatási határ alatti értékek száma szerepel, az átlag képzésénél ezeket a kimutatási határral vettük figyelembe

5.1.8 A talajban mért aktivitáskoncentrációk

A talaj mintavételezése a felső $0-5 \mathrm{~cm}-\mathrm{es}$ rétegből történt. A Tolna-megyei ERMAH laboratórium Kalocsán, Dunaföldváron, Pakson, Fadd-Domboriban és Csámpán havonta méri a talaj radioaktív szennyezettségét. Az FmÁ NÉBIH mintavételi helyei a atomerőműtől főként
déli irányban helyezkednek el. A vizsgált talajok aktivitáskoncentráció értékeit tartalmazza az 5-13. táblázat.

A vizsgált talajok gamma-spektrometriával mért ${ }^{137} \mathrm{Cs}$ koncentrációja $0,21-39 \mathrm{~Bq} / \mathrm{kg}$, a ${ }^{90} \mathrm{Sr}$ pedig $0,41-4,5 \mathrm{~Bq} / \mathrm{kg}$ között változott.

A PAE 30 km -es körzetében a talajmintákban mért aktivitáskoncentráció értékek alapján friss kibocsátásból származó, atomerőmüi eredetű szennyeződés nem volt kimutatható.

5-13. táblázat
Talajminták radioaktív koncentrációinak éves átlagai a hatósági mérésekből (FmÁ és EüÁ)

Meghatározás	Terület	Átlag ($\mathbf{B q} / \mathrm{kg}$) min.-max.; esetszám*
Összes béta	ÉNY-i félkör,R<10 km	
		360-380; 2
	ÉNY-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 490 \\ 250-620 ; 13 \end{gathered}$
	DK-i félkör, $\mathrm{R}<10 \mathrm{~km}$	$\begin{gathered} 460 \\ 390-570 ; 5 \end{gathered}$
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 480 \\ 270-590 ; 16 \\ \hline \end{gathered}$
Cs-134 (gamma-spektr.)	ÉNY-i félkör,R<10 km	$\begin{gathered} 0,45 \\ 0,15-0,75 ; 24(24) \end{gathered}$
	ÉNY-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 0,52 \\ 0,30-0,69 ; 12(12) \end{gathered}$
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} \hline 0,58 \\ 0,11-1,1 ; 24(24) \\ \hline \end{gathered}$
Cs-137 (gamma-spektr.)	ÉNY-i félkör, $\mathrm{R}<10 \mathrm{~km}$	$\begin{gathered} 1,1 \\ 0,58-3,5 ; 26(24) \end{gathered}$
	ÉNY-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 6,7 \\ 0,95-39 ; 25(12) \end{gathered}$
	DK-i félkör, $\mathrm{R}<10 \mathrm{~km}$	$\begin{gathered} 9,3 \\ 3,4-15 ; 5 \end{gathered}$
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 2,8 \\ 0,21-25 ; 40(21) \end{gathered}$
K-40 (gamma-spektr.)	ÉNY-i félkör, $\mathrm{R}<10 \mathrm{~km}$	$\begin{gathered} 290 \\ 200-390 ; 26 \end{gathered}$
	ÉNY-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 400 \\ 260-540 ; 25 \\ \hline \end{gathered}$
	DK-i félkör, $\mathrm{R}<10 \mathrm{~km}$	$\begin{gathered} 400 \\ 350-520 ; 5 \end{gathered}$
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 430 \\ 240-560 ; 40 \end{gathered}$
Sr-90	ÉNY-i félkör,R<10 km	1,5; 1
	ÉNY-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 1,1 \\ 0,41-2,7 ; 11(1) \end{gathered}$
	DK-i félkör, $\mathrm{R}<10 \mathrm{~km}$	$\begin{gathered} 0,83 \\ 0,47-1,4 ; 3(1) \end{gathered}$
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 1,4 \\ 0,48-4,5 ; 11(2) \end{gathered}$

* az esetszámok után zárójelben a kimutatási határ alatti értékek száma szerepel, az átlag képzésénél ezeket a kimutatási határral vettük figyelembe

5.1.9 A takarmánymintákban mért aktivitáskoncentrációk

Az FmÁ NÉBIH laboratóriumai havonkénti gyakorisággal vették a takarmánymintákat. A mintavételi helyek évről-évre állandóak: Foktő, Paks és Dunaszentgyörgy.

A mérési eredményeket az 5-14. táblázat tartalmazza. Az utóbbi évek adatait figyelembe véve elmondható, hogy a takarmányok ${ }^{137} \mathrm{Cs}$ aktivitása hasonló volt a korábbi évekhez, 2016-ban 0,017-2,6 Bq/kg közötti volt.

5-14. táblázat
Takarmányminták aktivitáskoncentrációinak éves átlagai a hatósági mérésekből (FmÁ)

Meghatározás	Terület	Átlag ($\mathrm{Bq} / \mathrm{kg}$) min.-max.; esetszám*
Összes béta	ÉNY-i félkör,R<10 km	$\begin{gathered} \hline 560 \\ 280-1100 ; 12 \end{gathered}$
	ÉNY-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 200 \\ 80-350 ; 8 \end{gathered}$
	DK-i félkör, $\mathrm{R}<10 \mathrm{~km}$	$\begin{gathered} 500 \\ 130-1100 ; 27(1) \\ \hline \end{gathered}$
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 220 \\ 86-710 ; 12 \end{gathered}$
Cs-137 (gamma-spektr.)	ÉNY-i félkör, $\mathrm{R}<10 \mathrm{~km}$	$\begin{gathered} 0,51 \\ 0,17-1,3 ; 12(4) \end{gathered}$
	ÉNY-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 0,12 \\ 0,035-0,23 ; 9(6) \end{gathered}$
	DK-i félkör, $\mathrm{R}<10 \mathrm{~km}$	$\begin{gathered} 0,53 \\ 0,065-2,6 ; 27(21) \\ \hline \end{gathered}$
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 0,18 \\ 0,040-0,45 ; 12(11) \end{gathered}$
K-40 (gamma-spektr.)	ÉNY-i félkör, R<10 km	$\begin{gathered} 520 \\ 250-1100 ; 12 \\ \hline \end{gathered}$
	ÉNY-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 210 \\ 64-360 ; 9 \end{gathered}$
	DK-i félkör, $\mathrm{R}<10 \mathrm{~km}$	$\begin{gathered} \hline 580 \\ 110-1100 ; 27 \\ \hline \end{gathered}$
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 250 \\ 67-650 ; 12 \\ \hline \end{gathered}$
Sr-90	ÉNY-i félkör,R<10 km	$\begin{gathered} 1,1 \\ 0,23-2,6 ; 12 \end{gathered}$
	ÉNY-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 0,39 \\ 0,063-0,77 ; 5(1) \end{gathered}$
	DK-i félkör, $\mathrm{R}<10 \mathrm{~km}$	$\begin{gathered} 1,4 \\ 0,10-2,5 ; 25(2) \end{gathered}$
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 0,32 \\ 0,070-0,67 ; 11(3) \end{gathered}$

* az esetszámok után zárójelben a kimutatási határ alatti értékek száma szerepel, az átlag képzésénél ezeket a kimutatási határral vettük figyelembe

5.1.10 A növénymintákban mért aktivitáskoncentrációk

2016-ban is folytatódott az erőmű 30 km-es körzetéből származó vadontermő és termesztett növények vizsgálata. A mintafajták: legelöi fư, csalán, üröm, ill. az emberi fogyasztásra kerülő sóska, paraj, konyhakerti zöldségek. A mintavételi helyek a korábbi évek gyakorlatának megfelelően: Uszód, Foktő, Gerjen, Kalocsa, Dunaszentbenedek.
Az eredményeket $\mathrm{Bq} / \mathrm{kg}$ egységben a $5-15$., $5-16$. és $5-17$. táblázatok foglalják össze. A közreműködő laboratóriumok összes béta és ${ }^{90} \mathrm{Sr}$ vizsgálatokat, továbbá gammaspektrometriai elemzéseket végeztek.

5-15. táblázat

Legelôi füminták aktivitáskoncentrációinak éves átlagai az FmÁ mérései alapján

Meghatározás	Terület	Átlag (Bq/kg) min.-max.; esetszám*
Összes béta	ÉNY-i félkör,R<10 km	$\begin{gathered} 200 \\ 160-240 ; 6(1) \end{gathered}$
	ÉNY-i félkör, R $\geq 10 \mathrm{~km}$	$\begin{gathered} 240 \\ 44-590 ; 7(1) \\ \hline \end{gathered}$
	DK-i félkör, $\mathrm{R}<10 \mathrm{~km}$	$\begin{gathered} 260 \\ 130-480 ; 5 \\ \hline \end{gathered}$
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 200 \\ 130-310 ; 16(1) \end{gathered}$
Cs-137 (gamma-spektr.)	ÉNY-i félkör, R<10 km	$\begin{gathered} 0,14 \\ 0,071-0,32 ; 6(6) \end{gathered}$
	ÉNY-i félkör, R $\geq 10 \mathrm{~km}$	$\begin{gathered} 0,26 \\ 0,050-0,93 ; 1(1) \end{gathered}$
	DK-i félkör, $\mathrm{R}<10 \mathrm{~km}$	$\begin{gathered} 0,49 \\ 0,14-0,90 ; 5(3) \end{gathered}$
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 0,17 \\ 0,040-0,72 ; 16(14) \\ \hline \end{gathered}$
K-40 (gamma-spektr.)	ÉNY-i félkör, R<10 km	$\begin{gathered} 230 \\ 280-310 ; 6 \end{gathered}$
	ÉNY-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 290 \\ 150-600 ; 6 \end{gathered}$
	DK-i félkör, $\mathrm{R}<10 \mathrm{~km}$	$\begin{gathered} 400 \\ 220-830 ; 5 \end{gathered}$
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 220 \\ 150-410 ; 16 \end{gathered}$
Sr-90	ÉNY-i félkör,R<10 km	$\begin{gathered} 0,21 \\ 0,12-0,32 ; 6 \end{gathered}$
	ÉNY-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 0,47 \\ 0,079-1,4 ; 7(1) \\ \hline \end{gathered}$
	DK-i félkör, $\mathrm{R}<10 \mathrm{~km}$	$\begin{gathered} 0,36 \\ 0,060-1,3 ; 5 \end{gathered}$
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 0,28 \\ 0.090-1,4 ; 16(1) \end{gathered}$

* az esetszámok után zárójelben a kimutatási határ alatti értékek száma szerepel, az átlag képzésénél ezeket a kimutatási határral vettük figyelembe

5-16. táblázat
Gyomnövényminták aktivitáskoncentrációinak éves átlagai a hatósági mérések alapján (FmÁ)

Meghatározás	Terület	$\begin{gathered} \text { Átlag (Bq/kg) } \\ \text { min.-max.; esetszám* } \end{gathered}$
Összes béta	ÉNY-i félkör, $\mathrm{R}<10 \mathrm{~km}$	225; 1
	ÉNY-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 200 \\ 180-210 ; 4(1) \\ \hline \end{gathered}$
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 140 \\ 77-240 ; 10 \end{gathered}$
Cs-137 (gamma-spektr.)	ÉNY-i félkör, R<10 km	0,85; 1
	ÉNY-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 0,75 \\ 0,066-2,5 ; 4(2) \end{gathered}$
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 0,94 \\ 0,056-8,6 ; 11(7) \end{gathered}$
K-40 (gamma-spektr.)	ÉNY-i félkör, $\mathrm{R}<10 \mathrm{~km}$	81;1
	ÉNY-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 200 \\ 57-310 ; 4 \end{gathered}$
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 170 \\ 70-240 ; 10 \\ \hline \end{gathered}$
Sr-90	ÉNY-i félkör, $\mathrm{R}<10 \mathrm{~km}$	0,91; 1
	ÉNY-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} \hline 0,51 \\ 0,096-0,96 ; 4 \\ \hline \end{gathered}$
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 0,31 \\ 0,042-1,6 ; 10(5) \\ \hline \end{gathered}$

* az esetszámok után zárójelben a kimutatási határ alatti értékek száma szerepel, az átlag képzésénél ezeket a kimutatási határral vettük figyelembe

Az emberi fogyasztásra kerülő konyhakerti növények ${ }^{137} \mathrm{Cs}$ koncentrációja $0,025-0,16 \mathrm{~Bq} / \mathrm{kg}$ között volt, ez megfelel az ország más tájain hasonló zöldségfélékben mért ${ }^{137} \mathrm{Cs}$ koncentráció értékeknek.

Összefoglalva elmondható, hogy a paksi erőműből származó radioaktív izotóp az atomerőmű 30 km -es körzetében termelt élelmiszerekben, valamint a környezetellenőrzés céljára gyűjtött mintákban nem volt kimutatható. A mintavételi és mérési bizonytalanságot figyelembe véve az EüÁ ERMAH és az FmÁ NÉBIH hálózatai által megadott mérési eredmények nem térnek el egymástól.

Nyers konyhakerti növények aktivitáskoncentrációinak éves átlagai a hatósági mérésekből (FmÁ)

Meghatározás	Terület	Átlag ($\mathrm{Bq} / \mathrm{kg}$) min.-max.; esetszám*
Összes béta	ÉNY-i félkör,R<10 km	120; 1
	ÉNY-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 110 \\ 49-250 ; 26 \\ \hline \end{gathered}$
	DK-i félkör, $\mathrm{R}<10 \mathrm{~km}$	46; 1
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 96 \\ 42-220 ; 10 \end{gathered}$
Cs-137 (gamma-spektr.)	ÉNY-i félkör,R<10 km	0,030; 1(1)
	ÉNY-i félkör, R $\geq 10 \mathrm{~km}$	$\begin{gathered} 0,058 \\ 0,025-0,10 ; 25(21) \\ \hline \end{gathered}$
	DK-i félkör, $\mathrm{R}<10 \mathrm{~km}$	0,041; 1(1)
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 0,092 \\ 0,053-0,16 ; 10(10) \end{gathered}$
K-40 (gamma-spektr.)	ÉNY-i félkör,R<10 km	100; 1
	ÉNY-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 150 \\ 52-240 ; 25 \end{gathered}$
	DK-i félkör, $\mathrm{R}<10 \mathrm{~km}$	58; 1
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 150 \\ 80-360 ; 10 \end{gathered}$
Sr-90	ÉNY-i félkör,R<10 km	$\begin{gathered} 0,15 \\ 0,071-0,29 ; 13(2) \end{gathered}$
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 0,20 \\ 0,060-0,39 ; 6(1) \end{gathered}$

* az esetszámok után zárójelben a kimutatási határ alatti értékek száma szerepel, az átlag képzésénél ezeket a kimutatási határral vettük figyelembe

5.1.11 Ivóvíz és állati eredetű élelmiszerek radioaktivitása

A Tolna megyei ERMAH laboratórium öt helyen, havonta vizsgálja a vezetékes ivóvizet. A mintavételi pontok között van közkút, középület és a PAE területe. A mérési eredményeket a 5-18. táblázat összesíti. A vizsgált vizek összes béta-aktivitása a kutak jellegétől függően $52-900 \mathrm{mBq} / \mathrm{l}$ volt. A gamma-spektrometriai eredmények majdnem minden esetben a kimutatási határ alattiak voltak, ezért az átlagérték, valamint a minimum és maximum erősen felülbecsültek (akár két-három nagyságrenddel is). A trícium koncentrációk maximuma csak egy esetben haladta meg a $3,0 \mathrm{~Bq} / \mathrm{l}$ értéket és a mélyfúrású kutakból származó mintáknál jórészt szintén a kimutatási határ alatt maradt.

5-18. táblázat
Az ivóvíz aktivitáskoncentrációinak éves átlagai, hatósági mérẻsekből (EüÁ)

Meghatározás	Terület	Átlag (Bq/l) min.-max.; esetszám*
Összes béta	ÉNY-i félkör, R<10 km	$\begin{gathered} 0,085 \\ 0,066-0,17 ; 24 \end{gathered}$
	ÉNY-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 0,094 \\ 0,060-0,25 ; 14(1) \end{gathered}$
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 0,12 \\ 0,052-0,90 ; 28(2) \end{gathered}$
Cs-137 (gamma-spektr.)	ÉNY-i félkör, $\mathrm{R}<10 \mathrm{~km}$	$\begin{gathered} 0,0054 \\ 0,0046-0,0062 ; 7(7) \end{gathered}$
	ÉNY-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 0,0044 \\ 0,0020-0,0060 ; 5(5) \end{gathered}$
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 0,0081 \\ 0,0014-0,049 ; \mathrm{Il}(11) \end{gathered}$
H-3	ÉNY-i félkör, $\mathrm{R}<10 \mathrm{~km}$	$\begin{gathered} 0,28 \\ 0,20-0,40 ; 12(6) \\ \hline \end{gathered}$
	ÉNY-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 1,10 \\ 0,530-1,50 ; 12 \end{gathered}$
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 0,90 \\ 0,90-0,90 ; 3(3) \end{gathered}$
Sr-90	ENY-i félkör, R<10 km	$\begin{gathered} \hline 0,0067 \\ 0,0047-0,0098 ; 8(6) \\ \hline \end{gathered}$
	ÉNY-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 0,0054 \\ 0,0047-0,0059 ; 4(3) \end{gathered}$
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 0,0067 \\ 0,0053-0,0099 ; 8(7) \end{gathered}$

* az esetszámok után zárójelben a kimutatási határ alatti értékek száma szerepel, az átlag képzésénél ezeket a kimutatási határral vettük figyelembe

A tejminták begyűjtésére havonként, az FmÁ NÉBIH esetében a takarmányminták vételével egyidőben került sor. A minták a dunaszentgyörgyi, foktői és paksi tehenészetből származtak A mérési eredményeket a 5-19. táblázat foglalja össze.

Látható, hogy a gamma-spektrometriai méréseknél a ${ }^{137} \mathrm{Cs}$ értékek legtöbbje kimutatási határral szerepel, így az ebből képzett átlagértékek is felülbecsültek. A minták ${ }^{137} \mathrm{Cs}$ koncentrációi a $10-130 \mathrm{mBq} / \mathrm{l}$ között voltak. A tejben mérhető összes béta-aktivitás gyakorlatilag teljes egészében a természetes 40 K izotópból származik.

5-19. táblázat
Tejminták aktivitáskoncentrációinak éves átlagai a hatósági mérésekből (FmÁ és EüÁ)

Meghatározás	Terület	Átlag (Bq/I) min.-max.; esetszám*
Összes béta	ÉNY-i félkör, R<10 km	$\begin{gathered} 47 \\ 38-51 ; 13 \end{gathered}$
	DK-i félkör, $\mathrm{R}<10 \mathrm{~km}$	$\begin{gathered} 46 \\ 39-50 ; 36 \end{gathered}$
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 48 \\ 44-51 ; 24 \\ \hline \end{gathered}$
Cs-134 (gamma-spektr.)	DK-i félkör, $\mathrm{R}<10 \mathrm{~km}$	$\begin{gathered} 0,077 \\ 0,059-0,091 ; 12(12) \end{gathered}$
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 0,073 \\ 0,037-0,094 ; 24(24) \end{gathered}$
Cs-137 (gamma-spektr.)	ÉNY-i félkör, R<10 km	$\begin{gathered} 0,019 \\ 0,010-0,020 ; 13(11) \end{gathered}$
	DK-i félkör, $\mathrm{R}<10 \mathrm{~km}$	$\begin{gathered} 0,054 \\ 0,0098-0,13 ; 40(40) \end{gathered}$
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 0,086 \\ 0,0099-0,12 ; 32(32) \end{gathered}$
I-131 (gamma-spektr.)	DK-i félkör, $\mathrm{R}<10 \mathrm{~km}$	$\begin{gathered} 0,084 \\ 0,047-0,16 ; 12(12) \end{gathered}$
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 0,10 \\ 0,0089-0,25 ; 24(24) \end{gathered}$
K-40 (gamma-spektr.)	ÉNY-i félkör, R<10 km	$\begin{gathered} 45 \\ 36-51 ; 13(1) \\ \hline \end{gathered}$
	DK-i félkör, $\mathrm{R}<10 \mathrm{~km}$	$\begin{gathered} 58 \\ 40-81 ; 40 \end{gathered}$
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 54 \\ 45-67 ; 32 \end{gathered}$
$\mathrm{Sr}-90$	ÉNY-i félkör, R<10 km	$\begin{gathered} 0,041 \\ 0,019-0,066 ; 12(8) \end{gathered}$
	DK-i félkör, $\mathrm{R}<10 \mathrm{~km}$	$\begin{gathered} \hline 0,042 \\ 0,0074-0,083 ; 29(19) \\ \hline \end{gathered}$
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 0,0088 \\ 0,0053-0,011 ; 8(4) \\ \hline \end{gathered}$

* az esetszámok után zárójelben a kimutatási határ alatti értékek száma szerepel, az átlag képzésénél ezeket a kimutatási határral vettük figyelembe

Az FmÁ NÉBIH laboratóriumai által vizsgált húsminták mérési eredményeit a 5-20. táblázat tartalmazza.

5-20. táblázat

Nyers húsminták aktivitáskoncentrációi a hatósági mérésekből (FmÁ)

Meghatározás	Terület	$\begin{gathered} \text { Átlag (Bq/kg) } \\ \text { min.-max.; esetszám* } \end{gathered}$
Sertés, Cs-137 (gamma-spektr.)	ÉNY-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 0,083 \\ 0,060-0,11 ; 6(6) \end{gathered}$
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 0,11 \\ 0,070-0,15 ; 9(9) \end{gathered}$
Sertés, K-40 (gamma-spektr.)	ÉNY-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 120 \\ 110-130 ; 6 \end{gathered}$
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 120 \\ 98-160 ; 9 \end{gathered}$
Szarvasmarha, Cs-137 (gamma-spektr.)	ÉNY-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	0,10-0,42; 2(1)
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 0,11 \\ 0,080-0,12 ; 3(3) \\ \hline \end{gathered}$
$\begin{aligned} & \text { Szarvasmarha, } \\ & \text { K-40 } \end{aligned}$	ÉNY-i félkör, R $\geq 10 \mathrm{~km}$	89-110;2
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 98 \\ 96-99 ; 3 \\ \hline \end{gathered}$
Baromfi, Cs-137 (gamma-spektr.)	ÉNY-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	0,38; 1(1)
	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 0,11 \\ 0,060-0,32 ; 20(20) \\ \hline \end{gathered}$
Baromfi, K-40 (gamma-spektr.)	DK-i félkör, $\mathrm{R} \geq 10 \mathrm{~km}$	$\begin{gathered} 120 \\ 95-140 ; 20 \end{gathered}$

* az esetszámok után zárójelben a kimutatási határ alatti értékek száma szerepel, az átlag képzésénél ezeket a kimutatási határral vettük figyelembe

5.2 A bátaapáti NRHT telephelyének környezellenőrzési mérési adatai

5.2.1 Az NRHT környezetében mért aeroszol-koncentráció adatai

A Nemzeti Radioaktívhulladék-tároló környezetében mért aeroszol-koncentrációkat a 5-21. táblázatban mutatjuk be. Az adatok öt mintavevő (A1-A5 állomások) összesített eredményeit tükrözik, az egyik mintavevő a telephelyen, négy pedig a telephely 3 km-es környezetében található különböző távolságokban. A 5-10. ábrán az A3 állomás összes bétakoncentrációinak időbeli változását mutatjuk be.

5-9. ábra
Az NRHT környezetellenőrző állomások helyszínei
Az elhelyezett mintavevők $3 \mathrm{~m}^{3} / \mathrm{h}$ optimális térfogatárammal működnek. A jellemző mintavételi idő (14 nap) alatt közel $1000 \mathrm{~m}^{3}$ levegőmennyiség halad át a szűrőpapíron.
A mintavétel után legalább 72 órás pihentetés következik. A minta gamma-spektrometriai mérése után az összes béta-aktivitását mérik. Jellemző kimutatási határok: $0,1-1,0 \mathrm{mBq} / \mathrm{m}^{3}$ (összes béta-aktivitás), $0,05 \mathrm{mBq} / \mathrm{m}^{3}$ (gamma-spektrometria, ${ }^{137}$ Cs izotóp).

Az időszakonként jelentkező nagyobb csúcsokat, illetve az állomásokon mért adatok közti eltéréseket az alkalmanként megnövekvő porterhelés indokolja. Ennek oka az állomások környezetében folyó emberi tevékenység (közlekedés, mezőgazdasági munka, tűzgyújtásfütés) melynek mértéke az állomások telepítési helyére jellemző (az A3 állomás helyezkedik el egyedül településen belül). A csúcsoktól eltekintve az összes béta-aktivitáskoncentrációk jellemzően $\sim 1 \mathrm{mBq} / \mathrm{m}^{3}$ alatt maradnak, ami igen alacsony érték.

5-10. ábra
Az NRHT éves aeroszol összes béta-méréseinek időbeli változása

5-21. táblázat
Az NRHT környezetében végzett aeroszol-mérések eredményeinek éves összefoglalása

Radionuklid	Átlag $\mathrm{mBq} / \mathrm{m}^{3}$	Minimum $\mathrm{mBq} / \mathrm{m}^{3}$	Maximum $\mathrm{mBq} / \mathrm{m}^{3}$	Szórás $\mathrm{mBq} / \mathrm{m}^{3}$	N	Kha
$\mathrm{Be}-7$	3,9	0,96	150	14	124	0
$\mathrm{Cs}-137$	-	-	-	-	125	125
Összes béta	0,83	0,020	17	1,5	125	1

5.2.2 Az NRHT környezetében mért kihullás eredmények

Öt helyszínen (A1-A5 méróállomások), az aeroszol mintavevők közelében elhelyezett mintavevők folyamatos üzemű, szakaszosan ürített csapadékgyűjtő edények. A mintagyűjtő aktív felülete $1 \mathrm{~m}^{2}$. A mintavételi idỏ 1 hét.

A mintagyűjtőből kimosott kihullást bepárolják, majd összes béta és gamma-spektrometriai mérést végeznek. A mérések jellemző kimutatási határa: $\sim 25 \mathrm{mBq} / \mathrm{m}^{2} / \mathrm{nap}$ (összes béta) és $20 \mathrm{mBq} / \mathrm{m}^{2} /$ nap (${ }^{137} \mathrm{Cs}$, gamma-spektrometria).

A mintákon végzett gamma-spektrometriai és összes béta-mérések eredményeinek éves jellemzőit a 5-22. táblázatban foglaltuk össze. A 5-11. ábrán az A3 állomáson mért kihullás összes béta-aktivitásainak időbeli változását mutatjuk be.

5-11. ábra
Az NRHT környezetében mért kihullás összes béta-aktivitások időbeli változása

5-22. táblázat
Az NRHT környezetében végzett kihullás mérések összefoglalása

Radionuklid	Átlag $\mathbf{m B q} /\left(\mathbf{m}^{\mathbf{2}}\right.$ $\mathbf{n a p})$	Minimum $\mathbf{m B q} /\left(\mathbf{m}^{\mathbf{2}} \mathbf{n a p}\right)$	Maximum $\mathbf{m B q} /\left(\mathbf{m}^{\mathbf{2}} \mathbf{n a p}\right)$	Szórás $\mathbf{m B q} /\left(\mathbf{m}^{\mathbf{2}} \mathbf{n a p}\right)$	\mathbf{N}	Kha
Be-7	290	67	1300	190	60	37
Cs-137	-	-	-	-	60	60
Összes béta	86	4,5	630	140	60	0

5.2.3 Az NRHT környezetében vett talajminták mérési eredményei

A talajmintákat a környezeti monitoring állomások mellől éves gyakorisággal veszik. A talaj vizsgálata az 5 mintavételi ponton $0-5 \mathrm{~cm}$-es mélységre terjed ki.

A mintákat $105^{\circ} \mathrm{C}$-on szárítják, majd őrlőmalomban homogenizálják. A kis -3 mm alatti szemcseméretű frakciót vizsgálják. Összes béta-méréshez 1 g feldolgozott mintát használnak fel, a mérés jellemző kimutatási határa $20 \mathrm{~Bq} / \mathrm{kg}$ (száraz talajra). A gamma-spektrometriai vizsgálatot 1000 g tömegủ mintán végzik. Jellemző kimutatási határ: $0,4 \mathrm{~Bq} / \mathrm{kg}$ (a ${ }^{137} \mathrm{Cs}$ izotópra).

Az NRHT telephelyén a talajban mért aktivitáskoncentrációk mérési eredményeit a 5-23. táblázatban mutatjuk be.

5-23. táblázat
Az NRHT környezetében vett talajminták mérési eredményeinek éves jellemzői

Vizsgálat	Átlag $\mathbf{B q / k g}$	Minimum $\mathbf{B q} / \mathbf{k g}$	Maximum $\mathbf{B q} / \mathbf{k g}$	Szórás $\mathbf{B q} / \mathbf{k g}$	\mathbf{N}	Kha
Cs-137	-	0,85	2,7	-	5	0
K-40	-	0,20	0,25	-	5	0
Ra-226	-	-	-	-	5	5
Sr-90	-	-	-	-	6	6
Összes béta	-	0,0044	0,63	-	5	0

A NÉBIH laboratóriumai végeztek in-situ méréseket Bátaapáti térségében is, melyek eredményeit a 5-24. táblázatban mutatjuk be.

5-24. táblázat
In-situ mérések eredményei 2016-ban (a ${ }^{137} \mathrm{Cs}$ mérések $\mathrm{Bq} / \mathrm{m}^{2}$-ben a többiek $\mathrm{Bq} / \mathrm{kg}$-ban van megadva)

Hely	Nuklid	Átlag	Minimum	Maximum	Szórás	\mathbf{N}	Kha
Bátaapáti	Ac-228	-	47	48	-	2	0
Bátaapáti	$\mathrm{Be}-7$	-	10	13	-	2	0
Bátaapáti	$\mathrm{Bi}-214$	-	-	43	-	1	0
Bátaapáti	$\mathrm{Cs}-137$	-	173	507	-	2	0
Bátaapáti	$\mathrm{K}-40$	-	531	573	-	2	0
Bátaapáti	$\mathrm{Pb}-212$	-	54	60	-	2	0
Bátaapáti	$\mathrm{Pb}-214$	-	-	38	-	1	0
Bátaapáti	$\mathrm{Ra}-226$	-	93	118	-	2	0
Mórágy	$\mathrm{Ac}-228$	-	-	65	-	1	0
Mórágy	$\mathrm{Be}-7$	-	-	15	-	1	0
Mórágy	$\mathrm{K}-40$	$\mathrm{~Pb}-212$	-	-	690	-	1
Móragy	$\mathrm{Pb}-214$	-	-	73	-	1	0
Mórágy			48	-	1	0	

5.2.4 Az NRHT környezetében végzett felszíni víz mérések eredményei

A vízminták mintavétele a felszíni vizekre (5 ponton), zajlik éves mintavételi gyakorisággal. Az összes béta-mérésekhez legalább 1 liter vízmennyiséget párolnak be, és a bepárlási maradék aktivitását mérik. A mérés kimutatási határa $10 \mathrm{mBq} / \mathrm{l}$. A gamma-spektrometriai méréshez általában 5 liter vizet párolnak be, és a teljes bepárolt mennyiséget elemzik. A mérés jellemző kimutatási határa $1-2 \mathrm{mBq} / \mathrm{l}$ (a ${ }^{137} \mathrm{Cs}$ radionuklidra).

Az NRHT környezetében végzett felszíni víz mérések eredményeit a 5-25. táblázat foglalja össze. Az ellenőrzési eredmények nem térnek el az országos mérési program keretében felszíni vizekre kapott eredményektől.

5-25. táblázat
Az NRHT környezetében végzett felszíni víz mérési eredményeinek éves jellemzōi

Radionuklid	Átlag $\mathbf{B q} / \mathbf{l}$	Minimum $\mathbf{B q} / \mathbf{l}$	Maximum $\mathbf{B q} / \mathbf{l}$	Szórás $\mathbf{B q} / \mathbf{l}$	\mathbf{N}	Kha
Cs-137	-	-	-	-	5	5
K-40	-	1,5	1,8	-	5	0
Ra-226	-	-	0,30	-	5	4
Összes béta	-	0,0020	0,28	-	5	2

5.2.5 Az NRHT környezetében mért növényminták adatai

A növényzetet a telephely környezetében 5 ponton évente mintázzák. (A növényzet fogalma minden esetben a pongyola pitypangot (Taraxacum officinale) jelenti.) A mintát szárítószekrényben $105^{\circ} \mathrm{C}$-on, 24 órán át szárítják, majd aprítógéppel $\sim 2 \mathrm{~mm}$-es darabokra darálják és homogenizálják, ezt követően $300{ }^{\circ} \mathrm{C}$-on elhamvasztják. Jellemző kimutatási határok: $40 \mathrm{~Bq} / \mathrm{kg}$ (összes béta-aktivitás); $2,5 \mathrm{~Bq} / \mathrm{kg}\left({ }^{137} \mathrm{Cs}\right.$, gamma-spektrometria).

A növényminták mérési eredményeit az 5-26. táblázatban foglaltuk össze.

5-26. táblázat

Az NRHT környezetében vett növényminták mérési eredményeinek éves jellemzői

Vizsgálat	Átlag $\mathbf{B q} / \mathbf{k g}$	Minimum $\mathbf{B q} / \mathbf{k g}$	Maximum $\mathbf{B q} / \mathbf{k g}$	Szórás $\mathbf{B q} / \mathbf{k g}$	\mathbf{N}	Kha
$\mathrm{Be}-7$	155	135	181	15,3	5	-
$\mathrm{Cs}-137$	-	-	-	-	5	5
$\mathrm{~K}-40$	1350	1080	1480	38,8	5	-
Sr-90	-	-	-	-	3	3
Összes béta	5280	180	7900	77	5	-

5.3 A püspökszilágyi RHFT környezellenőrzési mérési adatai

5.3.1 Az RHFT környezetében mért aeroszol aktivitás-koncentráció adatok

A püspökszilágyi Radioaktív Hulladék Feldolgozó és Tároló (RHFT) környezetében mért aeroszol-koncentrációkat a 5-12. ábrán és a 5-27. táblázatban mutatjuk be. Az adatok két mintavevő összesített eredményeit tükrözik, az egyik mintavevő a telephelyen, a másik a néhány km-re lévő Püspökszilágy faluban található.

A faluban elhelyezett mintavevő kisebb térfogatáramú (optimális beállítás szerint $2,3 \mathrm{~m}^{3} / \mathrm{h}$), a jellemzỏ heti mintavételi idő alatt átszívott levegőmennyiség $380 \mathrm{~m}^{3}$ (az ábrán "Psz méröállomás"). Az RHFT telephelyén nagyobb térfogatáramú aeroszol mintavevő található, $32 \mathrm{~m}^{3} / \mathrm{h}$ optimális térfogatárammal. A jellemző mintavételi idő (3,5 nap) alatt közel $3000 \mathrm{~m}^{3}$ levegőmennyiség halad át a szűrőpapíron (az ábrán "RHFT mérőállomás").

A mintavétel után 72 órás pihentetés következik. A minta gamma-spektrometriai mérése után az alfa/béta-számlálórendszer mérési geometriájához igazítva a szürőpapír középső 5 cm -es átmérőjű darabjának összes béta-aktivitását mérik. Jellemző kimutatási határok: $0,1-0,7 \mathrm{mBq} / \mathrm{m}^{3}$ (összes béta-aktivitás), $0,03 \mathrm{mBq} / \mathrm{m}^{3}$ (gamma-spektrometria, ${ }^{137} \mathrm{Cs}$ izotóp).

Az időszakonként jelentkezỏ nagyobb csúcsokat az alkalmanként megnövekvő porterhelés indokolja, amelynek okai a telephely környezetében folyó mezőgazdasági tevékenység illetve a faluban történő tűzgyújtás. A csúcsoktól eltekintve az összes béta-aktivitáskoncentrációk jellemzően $3 \mathrm{mBq} / \mathrm{m}^{3}$ alatt maradnak, ami igen alacsony érték.

5-12. ábra
Az RHFT éves aeroszol összes béta-méréseinek időbeli változása

5-27. táblázat
Az RHFT környezetében végzett aeroszol-mérések eredményeinek éves összefoglalása

Meghatározás	Átlag $\mathbf{m B q} / \mathbf{m}^{\mathbf{3}}$	Minimum $\mathbf{m B q} / \mathbf{m}^{\mathbf{3}}$	Maximum $\mathbf{m B q} / \mathbf{m}^{\mathbf{3}}$	Szórás $\mathbf{m B q} / \mathbf{m}^{\mathbf{3}}$	\mathbf{N}	Kha
$\mathrm{Be}-7$	3,0	0,42	9,2	1,7	123	1
$\mathrm{Cs}-137$	-	0,011	0,57	-	128	125
$\mathrm{~K}-40$	-	0,24	1,7	-	24	16
Összes béta	1,1	0,059	22	2,0	127	1

5.3.2 Az RHFT környezetében mért kihullás eredmények

A két helyszínen (telephely - a köv. ábrán "RHFT mérőállomás" és Püspökszilágy falu - a köv. ábrán "Psz mérőállomás"), az aeroszol mintavevők közelében elhelyezett mintavevők folyamatos üzemű, szakaszosan ürített csapadékgyűjtő edények. A mintagyűjtő aktív felülete $0,2 \mathrm{~m}^{2}$. A mintavételi idő 1 hét.

A mintagyűjtőből kimosott kihullást bepárolják, majd összes béta és gamma-spektrometriai mérést végeznek. A mérések jellemző kimutatási határa: $15 \mathrm{mBq} / \mathrm{m}^{2} / \mathrm{nap}$ (összes béta) és $30 \mathrm{mBq} / \mathrm{m}^{2} /$ nap $\left({ }^{137} \mathrm{Cs}\right.$, gamma-spektrometria).

A kihullásban mért összes béta-aktivitás időbeni változását a 5-13. ábra szemlélteti. A mintákon végzett gamma-spektrometriai és összes béta-mérések eredményeinek éves jellemzöit a 5-28. táblázatban foglaltuk össze.

5-13. ábra
Az RHFT környezetében mért kihullás összes béta-aktivitások időbeli változása

5-28. táblázat
Az RHFT környezetében végzett kihullás mérések összefoglalása

Radionuklid	Åtlag mBq/(m $\mathbf{n a p})$	Minimum $\mathbf{m B q} /\left(\mathbf{m}^{\mathbf{2}} \mathbf{n a p}\right)$	Maximum $\mathbf{m B q} /\left(\mathbf{m}^{\mathbf{2}} \mathbf{n a p}\right)$	Szórás $\mathbf{m B q} /\left(\mathbf{m}^{\mathbf{2}} \mathbf{n a p}\right)$	\mathbf{N}	Kha
Be-7	1100	49	3600	870	24	0
$\mathrm{Cs}-137$	-	9,5	14	-	24	22
K-40	-	240	540	-	16	8
H-3	-	1,11	1,42	-	6	4
C-14	-	0,062	0,11	-	6	2
Ra-226	-	-	360	-	2	1
Összes béta	390	80	2200	440	24	0

5.3.3 Az RHFT környezetének talajmérési eredményei

A talaj- és a hasonló jellegű iszap-, hordalékmintákat a különböző mintavételi pontokon havi, féléves illetve éves gyakorisággal veszik.

A talaj vizsgálata 14 mintavételi ponton $0-5 \mathrm{~cm}$-es mélységre terjed ki. A mintavételi körzet a kijelölt hely körüli $2 \mathrm{~m} \times 2 \mathrm{~m}$-es terület. A hordalék vizsgálata (1 mintavételi ponton) a csapadék, szél által a mintavételi helyre hordott talajmorzsák és egyéb anyagok gyűjtését jelenti. (Az iszap vizsgálata - 11 ponton - a patakok, a halastó, a talajvízfigyelő kutak és egyéb - állandó vagy ideiglenes - víztározó objektumokra terjedhet ki.)

A mintákat $105^{\circ} \mathrm{C}$-on szárítják, majd őrlőmalomban homogenizálják. A kis -3 mm alatti szemcseméretủ frakciót vizsgálják. Összes béta-méréshez 1 g feldolgozott mintát használnak fel, a mérés jellemző kimutatási határa $20 \mathrm{~Bq} / \mathrm{kg}$ (száraz talajra). A gamma-spektrometriai vizsgálatot 1000 g tömegű mintán végzik. Jellemző kimutatási határ: $0,5 \mathrm{~Bq} / \mathrm{kg}$ (a ${ }^{137} \mathrm{Cs}$ izotópra).

Az RHFT telephelyén a talajban mért aktivitáskoncentrációk mérési eredményeit a 5-29. táblázatban mutatjuk be.

5-29. táblázat

Az RHFT környezetében vett talajminták mérési eredményeinek éves jellemzői

Vizsgálat	Átlag $\mathbf{B q / k g}$	Minimum $\mathbf{B q / k g}$	Maximum $\mathbf{B q / k g}$	Szórás $\mathbf{B q / / k g}$	\mathbf{N}	Kha
Be-7	-	3,1	66	-	10	2
Cs-137	6,3	0,29	25	4,9	33	2
K-40	390	310	480	43	32	0
Ra-226	56	33	77	8,9	30	0
Sr-90	-	0,16	0,46	-	8	6
Összes béta	530	450	650	49	32	0

Püspökszilágy térségében a NÉBIH laboratóriumai is végeztek méréseket, melyek eredményeit az 5-30. táblázatban mutatjuk be.
A talajminták γ-spektrometriás vizsgálata szárítás után $450 \mathrm{~cm}^{3}$ térfogatú Marinelli edényben, 80000 s mérési idővel, az összes- β aktivitáskoncentráció meghatározás 1 g talajból történik szủrővizsgálatként. A felső 5 cm -es szeletből kémiai elválasztás után a ${ }^{90} \mathrm{Sr}$ aktivitáskoncentráció is meghatározásra kerül.

5-30. táblázat

Az RHFT létesítményeinek környezetéből származó talajminták aktivitáskoncentrációja 2016-ban (Bq/kg)

Hely	Nuklid	Åtlag	Minimum	Maximum	Szórás	\mathbf{N}	Kha
Kisnémedi	Cs-137	-	3,7	8,6	-	2	0
Kisnémedi	K-40	-	450	470	-	2	0
Kisnémedi	Sr-90	-	1,0	1,2	-	2	0
Kisnémedi	Összes béta	-	670	730	-	2	0
Püspökszilágy	Cs-137	-	0,16	11	-	4	0
Püspökszilágy	K-40	-	480	510	-	4	0
Püspökszilágy	SR-90	-	0,60	2,0	-	3	0
Püspökszilágy	Összes béta	-	690	770	-	4	0

A NÉBIH laboratóriumai végeztek in-situ méréseket is Püspökszilágy térségében, melyek eredményeit az 5-31. táblázatban mutatjuk be.

5-31. táblázat
In-situ mérések eredményei 2016-ban (a ${ }^{137} \mathrm{Cs}$ mérések $\mathrm{Bq} / \mathrm{m}^{2}$-ben a többiek $\mathrm{Bq} / \mathrm{kg}$-ban van megadva)

Hely	Nuklid	Átlag	Minimum	Maximum	Szórás	\mathbf{N}	Kha
Kisnémedi	Ac-228	-	-	36	-	1	0
Kisnémedi	Be-7	-	-	5	-	1	0
Kisnémedi	Bi-214	-	-	29	-	1	0
Kisnémedi	Cs-137	-	-	997	-	1	0
Kisnémedi	K-40	-	-	447	-	1	0
Kisnémedi	Pb-212	-	-	38	-	1	0
Kisnémedi	Ra-226	-	-	53	-	1	0
Püspökszilágy	Ac-228	-	34	38	-	4	0
Püspökszilágy	Be-7	-	-	9	-	2	0
Püspökszilágy	Cs-137	-	730	1808	-	4	0
Püspökszilágy	K-40	-	470	520	-	4	0
Püspökszilágy	Pb-212	-	38	45	-	4	0
Püspökszilágy	Pb-214	-	34	35	-	4	0

5.3.4 Az RHFT környezetében végzett felszíni víz mérések eredményei

A felszíni vizeket 9 ponton mintázzuk. A mintavételi gyakoriság féléves, illetve éves. Az összes béta-mérésekhez 10 liter vízmennyiséget párolnak be, és a bepárlási maradékból 1 g aktivitását mérik. A mérés kimutatási határa $10 \mathrm{mBq} / \mathrm{l}$. A gamma-spektrometriai méréshez szintén 10 liter vizet párolnak be, és a teljes bepárolt mennyiséget elemzik. A mérés jellemző kimutatási határa $1-2 \mathrm{mBq} / \mathrm{l}$ (${ }^{137} \mathrm{Cs}$ radionuklidra).

Az RHFT környezetében végzett felszíni víz mérések eredményeit a 5-32. táblázat foglalja össze. Az ellenőrzési eredmények nem térnek el az országos mérési program keretében felszíni vizekre kapott eredményektől.

5-32. táblázat
Az RHFT környezetében végzett felszíni víz mérési eredményeinek éves jellemzői

Radionuklid	Átlag $\mathbf{B q / /}$	Minimum $\mathbf{B q / /}$	Maximum $\mathbf{B q / /}$	Szórás $\mathbf{B q / /}$	\mathbf{N}	$\mathbf{K h a}$
$\mathrm{Cs}-137$	-	0,0034	0,0037	-	12	8
$\mathrm{~K}-40$	-	0,16	0,53	-	9	0
Ra-226	-	-	-	-	2	2
Sr-90	-	-	0,0023	-	3	2
$\mathrm{H}-3$	-	1,11	1,42	-	6	4
C-14	-	0,062	0,11	-	6	2
Összes béta	0,27	0,086	0,45	0,12	12	0

5.3.5 Az RHFT környezetében mért növényzet adatok

A növényzetet a telephely környezetében 15 ponton félévente, illetve évente mintázzák. (A növényzet fogalma általános esetben füféléket jelent, némely esetben gombát.) A mintát szárítószekrényben $105^{\circ} \mathrm{C}$-on, 24 órán át szárítják, majd aprítógéppel 3 mm -es darabokra darálják és homogenizálják, ezt követően $300{ }^{\circ} \mathrm{C}$-on elhamvasztják. Jellemző kimutatási határok: $40 \mathrm{~Bq} / \mathrm{kg}$ (összes béta-aktivitás); $0,5 \mathrm{~Bq} / \mathrm{kg}\left({ }^{(137} \mathrm{Cs}\right.$, gamma-spektrometria).
A növényminták mérési eredményeit az 5-33. táblázatban foglaltuk össze.
5-33. táblázat
Az RHFT környezetében vett növényminták mérési eredményeinek éves jellemzői

Vizsgálat	Átlag $\mathbf{B q / k g}$	Minimum $\mathbf{B q /} / \mathbf{k g}$	Maximum $\mathbf{B q / k g}$	Szórás $\mathbf{B q / k g}$	\mathbf{N}	Kha
$\mathrm{Be}-7$	78	12	160	42	25	4
$\mathrm{Cs}-137$	-	-	-	-	30	30
$\mathrm{~K}-40$	550	9,5	1100	230	30	1
Sr-90	-	0,0077	0,73	-	12	3
Összes béta	560	210	1100	250	30	0

5.4 A KFKI telephely környezellenörzési mérési adatai

5.4.1 A KFKI telephelyén mért gammadózis-teljesítmények

A KFKI telephelyen a dózisteljesítmény ellenőrzésére 20 GM-szonda szolgál. Ezen felül a telephely A típusú környezetellenőrző állomásán (a paksi állomások analógjaként) egy darab, a gamma-dózisteljesitmény mérésére alkalmas BITT szonda működik, $10 \mathrm{nSv} / \mathrm{h}$ $10 \mathrm{~Sv} / \mathrm{h}$ mérési tartományban. A szondák jelei a Környezetvédelmi Szolgálatra (MTA EK KVSZ) futnak be. Ezen mérőhelyek közül két olyat választottunk ki (1. és 2. állomás), amelyek általában jól jellemzik a telephely egészének dózisteljesítmény-szintjét (5-14. ábra). A többi állomáson az izotópforgalom és izotópszállitások miatt időnként az átlagos háttérszintet meghaladó értékek is jelentkezhetnek, ezek azonban elsősorban az egyes műveletek sugárzási viszonyaira, nem pedig a telephely környezetére jellemzőek.

5-14. ábra
A KFKI telephely mérỏállomásain mért napi dózisteljesítmények időbeli változása 2016-ban

A szondák az intézetben kifejlesztett elektronikát és 2 GM-csövet tartalmaznak: egy nagy érzékenységűt ($10 \mathrm{nGy} / \mathrm{h}-1 \mathrm{mGy} / \mathrm{h}$) a normális, és egy kis érzékenységűt ($0,10 \mathrm{mGy} / \mathrm{h}$ - $10 \mathrm{~Gy} / \mathrm{h}$) a baleseti szintekre. Az adatokat on-line módon továbbítják az NBIÉK adatközpontba és a CERTA adatközpontba.

A MTA EK KVSZ adatközpontja az eredményeket tízpercenként tárolja. (A pillanatnyi adatok az interneten is megtekinthetőek a következő honlapon: http://148.6.56.150.) Az éves feldolgozott adatokat a Környezetvédelmi Szolgálat Évi Jelentése tartalmazza, amelyet a Szolgálat honlapján (http://kvsz.kfki.hu/) lehet megtekinteni a „Jelentések" menüpontban.

5.4.2 A KFKI telephelyén mért aeroszol-koncentrációk

A KFKI telephelyen 5 mérőállomáson történik aeroszolos mintavételezés. Az összes béta-mérésre szánt minták esetében a mintavételezés és mintamérés - a 72 órás pihentetést követően - napi gyakorisággal történik. Az átszívott levegő mennyisége általában $100 \mathrm{~m}^{3} / \mathrm{nap}$ körül van. A mintavételt és mérést jellemző összes béta-aktivitáskoncentráció szokásos kimutatási határa $0,5 \mathrm{mBq} / \mathrm{m}^{3}$.

A KFKI telephely területén létesített „A" típusú (a paksi állomásokkal azonos kivitelü) környezetellenőrző állomáson nagy légforgalmú mintavevővel történik az aeroszol mintavételezés. Az átszívott levegő mennyiségének jellemző értéke $5000 \mathrm{~m}^{3} / h$ hét. A nuklidspecifikus mérés két HPGe detektor segítségével történik. A mérés szokásos kimutatási határa ${ }^{125} \mathrm{I}$ izotópra $0,05 \mathrm{mBq} / \mathrm{m}^{3}$, ${ }^{13 \mathrm{I}} \mathrm{I}$ izotópra pedig $0,02 \mathrm{mBq} / \mathrm{m}^{3}$. Az éves adatok a feldolgozást követően a Környezetvédelmi Szolgálat honlapján (http://kvsz.kfki.hu) elérhetőek.

A KFKI telephelyén mért aeroszol-koncentrációk éves jellemző adatait a 5-34. táblázatban foglaltuk össze.

5-34. táblázat
A KFKI telephelyén végzett aeroszol mérések eredményeinek éves összefoglalása

Radionuklid	Átlag $\mathbf{m B q} / \mathbf{m}^{\mathbf{3}}$	Minimum $\mathbf{m B q} / \mathbf{m}^{\mathbf{3}}$	$\mathbf{M a x i m u m}$ $\mathbf{m B q} / \mathbf{m}^{\mathbf{3}}$	Szórás mBq/m $\mathbf{\mathbf { m } ^ { \mathbf { 3 } }}$	\mathbf{N}	Kha
$\mathrm{Be}-7$	2,7	0,17	15	3,1	153	0
$\mathrm{Cs}-137$	1,0	0,73	1,6	0,067	153	0
$\mathrm{I}-125$	1,4	0,10	20	3,0	204	0
$\mathrm{I}-131$	0,095	0,010	3,2	0,30	204	0
$\mathrm{~K}-40$	1,5	0,24	8,1	1,1	153	0
Összes béta	1,3	0,042	20	1,0	978	0

Az alkalmazott számítógépes programok illetve kiértékelési algoritmus szerint azokat az eredményeket nem soroljuk az elfogadott adatok közé, amelyeknél ugyan minőségileg azonosítható a keresett komponens, de relatív bizonytalansága (hibája) meghaladja a 30%-ot. A kimutatási határ alatti mérések számát nem tüntettük fel. A ${ }^{125} \mathrm{I}$ és ${ }^{131} \mathrm{I}$ radioizotópok a telephelyen működő Izotóp Intézet Kft . radiokémiai laboratóriumainak a kibocsátási kritériumoknál kisebb kibocsátásaihoz köthetők.

5.4.3 A KFKI telephely területén mért kihullás eredmények

A KFKI telephely területén a Környezetvédelmi Szolgálat hetente vesz fall-out mintákat a Telephely négy pontján ($1.2 ., 5$., és 6 . állomás). A mintavevő-edények felülete $0,2 \mathrm{~m}^{2}$. A mintákkal gamma-spektrometriai vizsgálatot végeznek. A mérések során legtöbbször csak természetes eredetú ${ }^{7} \mathrm{Be}$ illetve ${ }^{40} \mathrm{~K}$ izotópokat illetve néhány alkalommal ${ }^{125} \mathrm{I},{ }^{60} \mathrm{Co}$ és ${ }^{137} \mathrm{Cs}$ izotópokat találtak (5-35. táblázat).

5-35. táblázat
A KFKI telephelyén végzett fall-out mérések eredményeinek éves összefoglalása

Radionuklid	Átlag mBq/(m² $\mathbf{m a p})$	Minimum $\mathbf{m B q} /\left(\mathbf{m}^{\mathbf{2}} \mathbf{n a p}\right)$	Maximum $\mathbf{m B q} /\left(\mathbf{m}^{2} \mathbf{n a p}\right)$	Szórás $\mathbf{m B q} /\left(\mathbf{m}^{2} \mathbf{n a p}\right)$	\mathbf{N}	Kha
$\mathrm{Be}-7$	38	10	190	36	85	0
$\mathrm{Co}-60$	-	1,2	1000	-	9	0
$\mathrm{Cs}-137$	970	1,5	1000	160	76	0
$\mathrm{I}-125$	1000	1000	1000	0,0	85	0
$\mathrm{I}-131$	1,6	1,0	52	5,6	85	0
$\mathrm{~K}-40$	940	290	1000	200	85	0

Az alkalmazott számítógépes programok illetve kiértékelési algoritmus szerint azokat az eredményeket nem soroljuk az elfogadott adatok közé, amelyeknél ugyan minőségileg azonosítható a keresett komponens, de relatív bizonytalansága (hibája) meghaladja a 30%-ot. Csak a kimutatási határ feletti eredményeket adó mérések számát közöljük. $\mathrm{A}^{125} \mathrm{I}$ radioizotóp eredetéről a 5.4.2. fejezetben már szóltunk.

5.5 A BME Oktatórekator telephely környezellenőrzési mérési adatai

A BME NTI Oktatóreaktor környékén 2016. év során elvégzett környezetellenőrző vizsgálatok - dunavíz és kihullás összesbéta, valamint talaj- és növényminták nuklidspecifikus kiértékelésének - eredményeit az 5-36-5-41. táblázatok muttaják be.

A 2016. évi környezetellenőrző mérések eredményei lényegében megfelelnek az elmúlt években mért értékeknek.

5-36. táblázat

A 2016. évi dunavíz-minták aktivitáskoncentrációja havi átlagban (kéthetente végzett mintavétel alapján)

	Ǒsszesbéta aktivitás $\left(\mathbf{B q} / \mathbf{m}^{\mathbf{3}}\right)$	Összesgamma aktivitás $\left(\mathbf{B q} / \mathbf{m}^{\mathbf{3}}\right)$
Január	$<1,38 \times 10^{3}$	$5,84 \times 10^{3}$
Február	$<1,63 \times 10^{3}$	$5,66 \times 10^{3}$
Március	$<1,85 \times 10^{3}$	$5,05 \times 10^{3}$
Április	$<4,83 \times 10^{3}$	$9,84 \times 10^{3}$
Május	$<2,07 \times 10^{3}$	$1,20 \times 10^{4}$
Június	$1,43 \times 10^{3}$	$8,84 \times 10^{3}$

Július	$<1,55 \times 10^{3}$	$1,06 \times 10^{4}$
Augusztus	$<1,82 \times 10^{3}$	$1,53 \times 10^{4}$
Szeptember	$<1,65 \times 10^{3}$	$1,75 \times 10^{4}$
Október	$<1,79 \times 10^{3}$	$1,45 \times 10^{4}$
November	$<1,05 \times 10^{3}$	$3,02 \times 10^{4}$
December	$<9,58 \times 10^{3}$	$1,65 \times 10^{4}$

5-37. táblázat

A 2016. évi fall-out (kihullás) összesbéta aktivitáskoncentrációja (havi egy mintavétel alapján)

Hónap	Összesbéta aktivitáskoncentráció $\left(\mathbf{B q} / \mathbf{m}^{2}\right)$
Január	$<2,83$
Február	$<1,75$
Március	$1,49 \times 10^{1}$
Április	$3,10 \times 10^{1}$
Május	$1,74 \times 10^{1}$
Június	9,0
Július	$3,16 \times 10^{1}$
Augusztus	$5,15 \times 10^{1}$
Szeptember	$1,68 \times 10^{1}$
Október	8,20
November	4,20
December	3,45

5-38. táblázat
A 2016. évi tavaszi füminta

Vizsgált nuklid	Aktivitás koncentrácio $(\mathbf{B q} / \mathrm{g})$
Co-60	$<4,04 \times 10^{-4}$
Cs-137	$<5,09 \times 10^{-4}$
Cs-134	$<4,26 \times 10^{-4}$
K-40	1,16
$\mathbf{I - 1 3 1}$	$<1,69 \times 10^{-3}$
Tórium sor	$7,08 \times 10^{-3}$
Rádium sor	$4,76 \times 10^{-3}$

5-39. táblázat

A 2016. évi tavaszi talajminta

```
Vizsgált nuklid 
```

$\mathbf{C o - 6 0}$	$<2,98 \times 10^{-4}$
$\mathbf{C s}-137$	$8,54 \times 10^{-3}$
$\mathbf{C s}-134$	$1,28 \times 10^{-3}$
$\mathbf{K}-40$	$3,53 \times 10^{-1}$
$\mathbf{I}-131$	$<2,85 \times 10^{-4}$
Tórium sor	$2,32 \times 10^{-2}$
Rádium sor	$4,00 \times 10^{-2}$

5-40. táblázat
A 2016. évi őszi füminta

Vizsgált nuklid	Aktivitás koncentráció $(\mathrm{Bq} / \mathrm{g})$
$\mathbf{C o - 6 0}$	$<5,98 \times 10^{-4}$
$\mathrm{Cs}-137$	$<7,5 \times 10^{-4}$
$\mathbf{C s}-134$	$8,77 \times 10^{-4}$
$\mathrm{~K}-40$	1,19
$\mathrm{I}-131$	$<2,49 \times 10^{-3}$
Tórium sor	$8,80 \times 10^{-3}$
Rádium sor	$2,01 \times 10^{-2}$

5-41. táblázat
A 2016. évi őszi talajminta

Vizsgált nuklid	Aktivitás koncentráció $(\mathrm{Bq} / \mathrm{g})$
$\mathbf{C o - 6 0}$	$<2,51 \times 10^{-4}$
$\mathbf{C s}-137$	$1,19 \times 10^{-2}$
$\mathbf{C s}-134$	$8,80 \times 10^{-4}$
K-40	$3,20 \times 10^{-1}$
$\mathrm{I}-131$	$<2,42 \times 10^{-4}$
Tórium sor	$2,08 \times 10^{-2}$
Rádium sor	$2,74 \times 10^{-2}$

6 Országhatáron túli hatások

6.1 A mohi atomerőmű környezetébe eső hazai területen mért eredmények

6.1.1 A mohi atomerőmú magyarországi környezetében mért dózisteljesítmények és aktivitáskoncentrációk (OKI KI SSFO és NÉBIH)

A Mohi Atomerőmű hazai környezetének ellenőrzéseként az OKI KI SSFO in-situ gamma-spektrometriai és dózisteljesítmény méréseket is végez a határ közelében 8 mérési helyszínen évente kétszer. A mérési helyszineket a 6-1. ábra és a 6-2. táblázat mutatja be. A ${ }^{232} \mathrm{Th}$-sorra, az ${ }^{238} \mathrm{U}$-sorra valamint a ${ }^{40} \mathrm{~K}$-re vonatkozó adatokat csak a teljesség kedvéért tüntettük fel, ezeket a Mohi Atomerőmủ működése nem befolyásolja. A ${ }^{137} \mathrm{Cs}$ koncentrációjára kapott értékek nem térnek el szignifikánsan az ország más területein jellemző értékektől.

A Mohi atomerőmű hazai környezetében a NÉBIH laboratóriumai is végeztek in-situ méréseket.

Az in-situ mérések eredményeit a 6-1. táblázatban mutatjuk be.

6-1. táblázat
In-situ mérések eredményei 2016-ban (a Cs-137 mérések $\mathbf{k B q} / \mathbf{m}^{2}$-ben a többiek $\mathrm{Bq} / \mathrm{kg}$-ban van megadva)

Radionuklid	Átlag	Minimum	Maximum	Szórás	\mathbf{N}	Kha
$\mathrm{Ac}-228$	29	21	45	6,8	21	0
$\mathrm{Be}-7$	-	6,3	16	-	6	0
$\mathrm{Bi}-214$	28	23	34	4,3	15	0
$\mathrm{~K}-40$	430	260	580	75	21	0
$\mathrm{~Pb}-212$	-	21	55	-	7	0
$\mathrm{~Pb}-214$	28	19	42	5,7	20	0
$\mathrm{Ra}-226$	-	-	46	-	1	0
$\mathrm{Tl}-208$	30	21	37	5,0	14	0
$\mathrm{Cs}-137$	1,3	0,26	2,7	0,76	21	0

A gamma-dózisteljesítményt az OKI-KI-SSFO AUTOMESS 6150 AD 6/H műszerrel mérte, a hiba minden esetben 1% körüli. A dózisteljesítmény mérések eredményeit a 6-2. táblázatban mutatjuk be.

6-2. táblázat

2016. évi dózisteljesítmény mérések eredményei

Település	Dózisteljesítmény, 1. félév $(\mathbf{n S v} / \mathbf{h})$	Dózisteljesítmény, 2. félév $(\mathbf{n S v} / \mathbf{h})$
Komárom	114	115
Esztergom	110	120
Dobogókő	103	104
Királyrét	117	109
Vámosmikola	113	107
Romhány	120	116
Balassagyarmat	103	107
Salgótarján	122	110

6.1.2 A mohi atomerőmű magyarországi környezetében vett fallout minták mérési eredményei (OKI KI SSFO)

Az OKI KI SSFO három határ menti településen (Ipolytölgyes, Ipolyvece, Balassagyarmat) vesz fall-out mintát havi rendszerességgel márciustól novemberig (a téli hónapokban nem). A mintavevő edények felülete $0,2 \mathrm{~m}^{2}$. Ezeken a mintákon összes bétaaktivitáskoncentráció és gamma-spektrometriai vizsgálatot végeznek. A gammaspektrometriai mérésekkel csak a természetes eredetű ${ }^{7} \mathrm{Be},{ }^{40} \mathrm{~K}$ és ${ }^{210} \mathrm{~Pb}$ izotópokat tudták kimutatni, a mesterséges eredetű ${ }^{137} \mathrm{Cs}$ izotóp aktivitáskoncentrációja hat minta kivételével kimutatási határ alatti, $0,13-0,63 \mathrm{~Bq} /\left(\mathrm{m}^{2} \cdot 30\right.$ nap $)$ alatti volt. A detektált ${ }^{137} \mathrm{Cs}$ felületi aktivitások 0,07 és $0,21 \mathrm{~Bq} /\left(\mathrm{m}^{2} \cdot 30\right.$ nap $)$ voltak, a mintában lévő cézium legvalószínűbben a talaj felporzásából származott. A fallout minták összes béta-aktivitások mérése proporcionális detektorokkal történik, hasonlóképen mint az aeroszol minták esetében, amelyek a kb. 50 keV-nál nagyobb energiájú elektronok detektálására képesek.

A mérések eredményeit a 6-3. táblázatban mutatjuk be.

> 6-3. táblázat

A mohi atomerómú hazai környezetében vett fall-out minták aktivitása 2016-ban $\mathbf{B q} /\left(\mathrm{m}^{2} \cdot 30\right.$ nap $)$

Radionuklid	Átlag	Minimum	Maximum	Szórás	\mathbf{N}	Kha
$\mathrm{Be}-7$	82	17	170	51	12	0
$\mathrm{Cs}-137$	-	0,069	0,63	-	12	8
$\mathrm{~K}-40$	-	2,1	11	-	12	4
$\mathrm{~Pb}-210$	-	3,0	270	-	12	5
Összes béta	15	5	29	7,5	12	0

6.1.3 A mohi atomerőmű magyarországi környezetében vett talajminták mérési eredményei (OKI KI SSFO és NÉBIH)

Az OKI KI SSFO három határ menti település (Balassagyarmat, Esztergom, Komárom) talaját mintázza félévente. A mintákon összes béta-aktivitáskoncentráció és gammaspektrometriai vizsgálatot végez. A gamma-spektrometriai vizsgálatot a $110^{\circ} \mathrm{C}$-on szárított mintákon, Marinelli-geometriában ($600 \mathrm{~cm}^{3}$ térfogaton) végzik 20000 s mérési idővel. Az összes béta-aktivitást kb .1 g talajból határozzák meg alacsony hátterú alfa/béta mérőműszerrel, amelybe proporcionális detektorok vannak beépítve. A detektorok a kb. 50 keV-nál nagyobb energiájú elektronok érzékelésére képesek.

A Mohi erőmű hazai környezetében a NÉBIH laboratóriumai is végeztek méréseket. A talajminták γ-spektrometriás vizsgálata szárítás után $450 \mathrm{~cm}^{3}$ térfogatú Marinelli edényben, 80000 s mérési idỏvel, az összes béta-aktivitáskoncentráció meghatározás 1 g talajból történik szürővizsgálatként. A felső 5 cm -es szeletből kémiai elválasztás után a ${ }^{90} \mathrm{Sr}$ aktivitáskoncentráció is meghatározásra kerül.

A mérések eredményeit a 6-4. táblázatban mutatjuk be.

6-4. táblázat
A mohi atomerőmű hazai környezetéből szảrmazó talajminták aktivitáskoncentrációja 2016-ban ($\mathrm{Bq} / \mathrm{kg}$)

Radionuklid	Átlag	Minimum	Maximum	Szórás	N	Kha
Ac-228	-	22	34	-	6	0
Bi-214	-	24	34	-	6	0
Cs-134	-	-	-	-	3	3
Cs-137	9,1	0,26	36	8,1	26	0
K-40	460	360	780	110	26	0
Pb-214	-	23	33	-	6	0
Sr-90	-	0,42	3,7	-	9	0
Tl-208	-	21	37	-	6	0
Összes béta	610	420	930	120	18	0

6.1.4 A mohi atomerőmű magyarországi környezetében vett fűminták mérési eredményei (OKI KI SSFO és NÉBIH)

Az OKI KI SSFO három határ menti településen (Balassagyarmat, Esztergom, Komárom) vesz fümintákat félévente, a talajmintákkal egyidejűleg. Ezeken a mintákon összes béta-aktivitáskoncentráció és gamma-spektrometriai vizsgálatot végez. A minta-előkészítés szárítást, a száraz tömeg mérését, majd hamvasztást jelent. A gamma-spektrometriai analízist a minta $420{ }^{\circ} \mathrm{C}$-on izzított hamujának legalább $50 \mathrm{~cm}^{3}$-éből, az összes bétaaktivitáskoncentráció meghatározását pedig ennek a hamunak 1 g-jából végzik. Az összes béta-aktivitás méréseket az OKI KI SSFO az alacsony hátterủ alfa/béta mérőkészülékkel méri, hasonlóképen mint a talajmintákat. A detektorok a kb. 50 keV -nál nagyobb energiájú elektronok mérésére képesek.

A mohi erőmű hazai környezetében a NÉBIH laboratóriumai is végeztek méréseket. A fű minták γ-spektrum analízisét a minta $450^{\circ} \mathrm{C}$-on izzított hamujának $50 \mathrm{~cm}^{3}$-ből (kb. 20-30 g) 80000 s mérési idővel, az összes- β aktivitáskoncentráció meghatározást pedig ennek a hamunak 1-2 g-jából végzik a laboratóriumok. Kémiai elválasztás után a ${ }^{90} \mathrm{Sr}$ aktivitáskoncentrációt is meghatározzák.

A mérések eredményeit a 6-5. táblázatban mutatjuk be.
6-5. táblázat
A mohi atomerőmú hazai környezetéből származó fűminták aktivitáskoncentrációja 2016-ban ($\mathrm{Bq} / \mathrm{kg}$)

Nuklid	Átlag	Minimum	Maximum	Szárás	\mathbf{N}	Kha
Cs-134	-	-	-	-	3	3
Cs-137	0,45	0,06	1,5	0,44	26	15
K-40	550	140	2000	380	26	0
Sr-90	1,3	0,26	2,5	0,76	20	0
Összes alfa	11	2,2	28	8,5	20	4
Összes béta	500	130	1300	280	26	0

6.1.5 A mohi atomerőmú magyarországi környezetében vett zöldség-és gyümölcsminták mérési eredményei (OKI KI SSFO és NÉBIH)

Az OKI KI SSFO három határ menti település (Balassagyarmat, Esztergom, Komárom) piacán vesz zöldség- és gyümölcsmintákat évente egyszer (ősszel). Ezeken a mintákon összes béta-aktivitáskoncentráció és gamma-spektrometriai vizsgálatot végez. A minta-előkészítés szárítást, a száraz tömeg mérését, majd hamvasztást jelent. A gamma-spektrometriai analízist a minta $420{ }^{\circ} \mathrm{C}$-on izzított hamujának legalább $50 \mathrm{~cm}^{3}$-éből, az összes bétaaktivitáskoncentráció meghatározását pedig ennek a hamunak 1 g-jából végzik. Az összes béta-aktivitás méréseket az OKI KI SSFO az alacsony hátterű alfa/béta mérőkészülékkel méri. A detektorok a kb. 50 keV -nál nagyobb energiájú elektronok mérésére képesek. A ${ }^{137} \mathrm{Cs}$ koncentrációja minden esetben kimutatási határ ($\mathrm{kb} .0,25 \mathrm{~Bq} / \mathrm{kg}$) alatt maradt, az összes bétaaktivitáskoncentrációk pedig jellemzően a természetes eredetư ${ }^{40} \mathrm{~K}$ izotóptól származtak.

A Mohi erőmủ hazai környezetében a NÉBIH laboratóriumai is végeznek méréseket. A γ-spektrum analízist a minta $450^{\circ} \mathrm{C}$-on izzitott hamujának $50 \mathrm{~cm}^{3}$-ből (kb. $20-30 \mathrm{~g}$), 80000 s mérési idővel, az összes- β aktivitáskoncentráció meghatározást pedig ennek a hamunak 1 g jából végzik a laboratóriumok szürővizsgálatként. Leveles zöldségfélékből, vadon termő ehető gombákból illetve a gyökérzöldségekből kémiai elválasztás után a ${ }^{90} \mathrm{Sr}$ aktivitáskoncentrációt is meghatározzák.

A mérések eredményeit a 6-6. táblázatban mutatjuk be.

6-6. táblázat
A mohi atomerőmú hazai környezetéből származó zöldség- és gyümölcsminták aktivitáskoncentrációja 2016-ban ($\mathrm{Bq} / \mathrm{kg}$)

Nuklid	Átlag	Minimum	Maximum	Szórás	\mathbf{N}	Kha
Cs-134	-	-	-	-	6	6
Cs-137	-	0,017	0,24	-	26	20
K-40	110	40	240	60	26	0
Sr-90	0,22	0,0061	0,64	0,24	12	2
Összes alfa	-	0,44	8,5	-	20	15
Összes béta	95	29	210	53	26	0

6.1.6 A mohi atomerőmű magyarországi környezetében vett folyóvíz-és iszapminták mérési eredményei (OKI KI SSFO)

Az OKI KI SSFO három határ menti településen (Kemence, Letkés, Nagybörzsöny) vesz folyóvízmintákat félévente. Ezeknek a mintáknak meghatározza az összes bétaaktivitáskoncentrációját, valamint a trícium és ${ }^{40} \mathrm{~K}$ koncentrációját. A minta-előkészítés az összes béta-aktivitás mérés esetén bepárlást és $380^{\circ} \mathrm{C}$-on történő hamvasztást jelent, a trícium mérés esetén pedig elektrolitikus dúsitást. A ${ }^{40} \mathrm{~K}$ koncentrációt atomabszorpciós spektrofotométerrel mérik. Az összes béta-aktivitás méréseket az OKI KI SSFO az alacsony hátterủ alfa/béta mérőkészülékkel méri. A detektorok a kb . 50 keV -nál nagyobb energiájú elektronok mérésére képesek. A mérési eredményeket a 6-7. táblázat tartalmazza.

> 6-7. táblázat

A mohi atomerőmú hazai környezetéből származó folyóvízminták aktivitáskoncentrációja (Bq/l)

Nuklid	Átlag	Minimum	Maximum	Szórás	\mathbf{N}	Kha
$\mathrm{H}-3$	-	0,50	1,5	-	4	0
$\mathrm{Sr}-90$	-	0,089	0,23	-	4	0
Összes béta	-	0,11	0,26	-	4	0

Az OKI KI SSFO ugyanezeken a helyszíneken ugyancsak féléves gyakorisággal iszapmintákat is vizsgál gamma-spektrometriai módszerrel. A gamma-spektrometriai vizsgálatot a $110{ }^{\circ} \mathrm{C}$-on szárított mintákon, Marinelli-geometriában ($600 \mathrm{~cm}^{3}$ térfogaton) végzik 40000 s mérési idővel. A ${ }^{137} \mathrm{Cs}$ aktivitáskoncentrációjára vonatkozó mérési eredményeket a 6-8. táblázat tartalmazza.

6-8. táblázat
A mohi atomerơmũ hazai környezetéből származó iszapminták
${ }^{137} \mathbf{C s}$ koncentrációja ($\mathrm{Bq} / \mathrm{kg}$)

Település	1. félév	2. félév
Kemence	$2,37 \pm 0,19$	$4,06 \pm 0,20$
Letkés	$6,09 \pm 0,37$	$2,45 \pm 0,22$
Nagybörzsöny	$5,02 \pm 0,30$	$4,53 \pm 0,32$

6.1.7 A mohi atomerőmű magyarországi környezetében vett ivóvízminták mérési eredményei (OKI KI SSFO)

Az OKI KI SSFO három határ menti településen (Balassagyarmat, Esztergom, Vác) vesz ivóvízmintákat félévente. Ezeknek a mintáknak meghatározza az összes bétaaktivitáskoncentrációját, valamint a trícium és ${ }^{40} \mathrm{~K}$ koncentrációját. A minta-előkészités az összes béta-aktivitás mérés esetén bepárlást és $380^{\circ} \mathrm{C}$-on történő hamvasztást jelent, a trícium mérés esetén pedig elektrolitikus dúsítást. ${ }^{\mathrm{A}}{ }^{40} \mathrm{~K}$ koncentrációt atomabszorpciós spektrofotométerrel mérik. Az OKI KI SSFO ezen ivóvíz minták összes béta-aktivitás mérését a korábbiakban már bemutatott mérőműszerrel végzi el.

A mérési eredményeket a 6-9. táblázat tartalmazza.

> 6-9. táblázat

A mohi atomerőmú hazai környezetéböl származó ivóvízminták aktivitáskoncentrációja (Bq/I)

Nuklid	Átlag	Minimum	Maximum	Szórás	N	Kha
H-3	-	0,57	4,8	-	6	0
K-40	-	0,068	0,12	-	6	0
Összes béta	-	0,071	0,16	-	6	0

7 Kibocsátási eredmények

7.1 A Paksi Atomerőmú Zrt.

Az atomerőmủ a Duna jobb partján, attól kb. 2 km távolságban helyezkedik el. A hủtésre használt dunavíz a hidegvíz csatornán (V1 mintavételi pont) kerül az atomerőműbe (vízforgalom: $\mathrm{kb}, 4.105 \mathrm{~m}^{3} / o ́ r a$). A felhasznált hűtő- és más ipari víz a melegvíz csatornán (V2 mintavételi pont), míg a kutakból táplált vízellátásból származó kommunális (WC, mosoda, laboratórium stb.) szennyvíz (napi $1500 \mathrm{~m}^{3}, \mathrm{~V} 3$ mintavételi pont) tisztítás után kerül a melegvíz csatorna torkolatába, s onnan a Dunába.

A légnemủ radioaktív anyagok kibocsátása 2 db 100 m magas kéményen történik, ezek légforgalmának éves átlaga a mérések szerint 426,5 és 463 ezer $\mathrm{m}^{3} /$ /óra volt.

A blokkok karbantartási ideje 2016-ban a következő volt:

1. blokk: május 21 . - június 19 .
2. blokk: október 18. - december 25 .
3. blokk: nem volt föjavítás
4. blokk: augusztus 1. - augusztus 27.

7-1. ábra
Az atomerőmű környezeti elhelyezkedése az üzemi monitorozó hálózattal

A hatósági mérési és mintavételi helyek
A jelentésben közöltek megértését szolgálja az erőmű földrajzi elhelyezkedését és a monitorozó állomásokat, valamint a résztvevő hatósági laboratóriumok mintavételi helyeit szemléltető 7-1. és 7-2. ábra. Az erőmű környezeti hatásának elemzéséhez ugyanis a mért eredményeket irány és távolság szerint is célszerü csoportosítani.

Az erőműben a többéves szekunderköri teljesítményjavító fejlesztések és hatékonyságnövelő intézkedések eredményeképpen a blokkok névleges elektromos teljesítménye 2009. óta összesen 2000 MW.

Az OKI KI (OKK OSSKI) által működtetett a létesítmény felügyeletéhez kapcsolódó kibocsátás-ellenőrzési és környezetellenőrzési hatósági mérési adatok száma az 5.1 fejezetben került bemutatásra.

2004-ben került bevezetésre a 15/2001. (VI. 6.) KöM rend. előírásai alapján a kibocsátás korlátozási és ellenőrzési rendszer az erőműben. A korlátozási rendszer alapja az, hogy a kibocsátási adatokat a dózismegszorításból ($90 \mu \mathrm{~Sv}$) származtatott nuklid- és kibocsátási útvonal specifikus kibocsátási határértékekkel kell összevetni.

7.1.1 Légköri kibocsátás

A légköri kibocsátás radioizotópjainak aktivitása a 7-1. táblázatban látható. Az értékek a hatóság által jóváhagyott üzemi mérések eredményei, amelyeket a sugárterhelés becsléséhez is felhasználtunk. A kibocsátások a mért értékekből és a kimutatási határokból számítottak, ezért értékük több radionuklidnál jelentősen felül becsült (pl. ${ }^{24} \mathrm{Na},{ }^{42} \mathrm{~K}$). E táblázat tartalmazza továbbá az egyes radionuklidok (esetenként a külön kémiai/fizikai formára
vonatkozó) kibocsátási határértékeit és ezen mennyiségek hányadosát is. (Emlékeztetőül: e hányadosok összege adja a kibocsátási határérték kihasználást.)

7-1. táblázat
Éves nuklidspecifikus kibocsátások (a hatóság által jóváhagyott üzemi mérések), 2016.

Izotóp	Kibocsátás [Bq]	Éves korlát [Bq]	Határérték kihasználása
${ }^{41} \mathrm{Ar}$	1,21E+13	$4,60 \mathrm{E}+16$	2,64E-04
${ }^{85} \mathrm{Kr}$	$5,48 \mathrm{E}+10$	$1,20 \mathrm{E}+19$	4,57E-09
${ }^{85 \mathrm{~m}} \mathrm{Kr}$	2,10E+12	4,10E+17	5,12E-06
${ }^{87} \mathrm{Kr}$	1,44E+12	7,30E+16	1,98E-05
${ }^{88} \mathrm{Kr}$	$1,45 \mathrm{E}+12$	$2,90 \mathrm{E}+16$	4,99E-05
${ }^{133} \mathrm{Xe}$	2,26E+12	$2,00 \mathrm{E}+18$	1,13E-06
${ }^{135} \mathrm{Xe}$	2,52E+12	$2,40 \mathrm{E}+17$	1,05E-05
${ }^{3} \mathrm{H}$ (HT)	4,17E+11	2,20E+17	1,90E-06
${ }^{3} \mathrm{H}$ (HTO)	$4,02 \mathrm{E}+12$	1,70E+17	2,37E-05
${ }^{14} \mathrm{C}\left(\mathrm{CO}_{2}\right)$	2,30E+10	$1,30 \mathrm{E}+14$	1,77E-04
${ }^{14} \mathrm{C}\left(\mathrm{CH}_{4}\right)$	$6,30 \mathrm{E}+11$	1,50E+21	4,20E-10
${ }^{89} \mathrm{Sr}$	$6,07 \mathrm{E}+05$	$4,30 \mathrm{E}+12$	1,41E-07
${ }^{90} \mathrm{Sr}$ *	$6,48 \mathrm{E}+05$	$3,70 \mathrm{E}+11$	1,75E-06
${ }^{24} \mathrm{Na}$	$5,98 \mathrm{E}+07$	$1,50 \mathrm{E}+15$	3,99E-08
${ }^{42} \mathrm{~K}$	4,83E+08	$1,70 \mathrm{E}+16$	2,84E-08
${ }^{51} \mathrm{Cr}$	8,64E+06	$8,80 \mathrm{E}+14$	9,82E-09
${ }^{54} \mathrm{Mn}$	$2,28 \mathrm{E}+06$	$1,80 \mathrm{E}+13$	1,27E-07
${ }^{58} \mathrm{Co}$	1,61E+06	$2,10 \mathrm{E}+13$	7,67E-08
${ }^{59} \mathrm{Fe}$	3,62E+06	1,10E+13	3,29E-07
${ }^{60} \mathrm{Co}$	7,00E+06	$2,40 \mathrm{E}+12$	2,92E-06
${ }^{65} \mathrm{Zn}$	4,16E+06	$2,30 \mathrm{E}+12$	1,81E-06
${ }^{75} \mathrm{Se}$	1,55E+06	$2,90 \mathrm{E}+12$	5,34E-07
${ }^{76} \mathrm{As}$	$1,18 \mathrm{E}+08$	1,10E+15	1,07E-07
${ }^{95} \mathrm{Nb}$	2,10E+06	$4,90 \mathrm{E}+13$	4,29E-08
${ }^{95} \mathrm{Zr}$	$2,07 \mathrm{E}+06$	2,30E+13	9,00E-08
${ }^{99} \mathrm{Mo}$	3,25E+06	$1,90 \mathrm{E}+15$	1,71E-09
${ }^{103} \mathrm{Ru}$	1,82E+06	$8,70 \mathrm{E}+12$	2,09E-07
${ }^{106} \mathrm{Ru}$ *	$5,06 \mathrm{E}+06$	2,30E+11	2,20E-05
${ }^{110 \mathrm{~m}} \mathrm{Ag}$	6,21E+06	4,80E+12	$1,29 \mathrm{E}-06$
${ }^{124} \mathrm{Sb}$	$1,99 \mathrm{E}+06$	$8,90 \mathrm{E}+12$	2,24E-07
${ }^{125} \mathrm{Sb}$	4,29E+06	$1,40 \mathrm{E}+13$	3,06E-07
${ }^{131} \mathrm{I}$ aer.	1,92E+06	$3,70 \mathrm{E}+12$	5,19E-07
${ }^{131}$ I elemi	3,15E+06	$7,80 \mathrm{E}+11$	4,04E-06
${ }^{131}$ I szerves	9,48E+06	$9,50 \mathrm{E}+13$	9,98E-08
${ }^{132}$ I elemi	4,78E+06	$3,20 \mathrm{E}+15$	1,49E-09
${ }^{133}$ I elemi	1,42E+06	$3,70 \mathrm{E}+14$	3,84E-09
${ }^{133}$ I szerves	$8,00 \mathrm{E}+05$	$1,30 \mathrm{E}+15$	6,15E-10
${ }^{134} \mathrm{Cs}$	$1,48 \mathrm{E}+06$	$8,20 \mathrm{E}+11$	1,80E-06
${ }^{137} \mathrm{Cs}$ *	$9,90 \mathrm{E}+06$	$1,00 \mathrm{E}+12$	9,90E-06
${ }^{140} \mathrm{Ba}$ *	2,98E+06	$2,90 \mathrm{E}+13$	1,03E-07
${ }^{141} \mathrm{Ce}$	$2,09 \mathrm{E}+06$	4,60E+13	4,54E-08
${ }^{144} \mathrm{Ce}$ *	1,04E+07	$3,50 \mathrm{E}+12$	2,98E-06
${ }^{154} \mathrm{Eu}$	1,48E+06	$5,10 \mathrm{E}+12$	2,90E-07
${ }^{181} \mathrm{Hf}$	2,00E+04	1,00E+13**	2,00E-09**
Összesen (total)	-	-	6,05E-04

a *-gal jelölt izotópok aktivitását leányelemükkel együtt adtuk meg
** a hafnium éves korlátja 2017-ben lett jóváhagyva.

Az aeroszol-kibocsátások 54 százaléka az 1.-2. blokk szellőzőkéményén keresztül történt, a két kiépítés kibocsátási arányai radionuklidtól függően $0,7-7$ közöttiek voltak. Az
aeroszolok teljes éves kibocsátásában, legnagyobb arányban (az egy napnál rövidebb felezési idejủ izotópok nélkül) a ${ }^{76} \mathrm{As},{ }^{60} \mathrm{Co},{ }^{110 \mathrm{~m}} \mathrm{Ag},{ }^{134} \mathrm{Cs}$ és ${ }^{137} \mathrm{Cs}$ izotópok szerepeltek.

A kibocsátások évközbeni alakulásának, továbbá az üzemi és a hatósági mérési eredmények együttfutásának szemléltetésére a $7-3$. ábrán bemutatjuk a légköri ${ }^{137} \mathrm{Cs}$ kibocsátást.

A hatóság által elfogadott éves kibocsátások meghatározásánál az üzem a három mintavevő ág közül a legnagyobb aktivitást eredményezőt veszi számításba.

7-3. ábra
Havi légköri Cs-137 kibocsátások (leányelem nélkül) *
*Az esetenkénti nagyobb eltérés oka elsösorban a hatóság ($K \vee \vee A$) és az üzem(PAE) eltérö mintavételezéséböl adódik
(lényegében a hatóság egy mintavételi ágat mér, míg az üzem három mintavételi ág maximumát adja meg)
Az éves átlagos nemesgáz-kibocsátások az 1.-2. blokkok kéményénél, ill. a 3.-4. blokkok kéményénél egy 2-3-as faktoron belül megegyeztek a ${ }^{133} \mathrm{Xe}$ kivételével. Megállapíthatjuk, hogy a nemesgázok izotóp-összetételében az üzemzavart megelőző évekhez hasonlóan újra az ${ }^{41} \mathrm{Ar}$, mint aktivációs termék volt a legjelentösebb izotóp (7-4. ábra).

Összességében a légköri kibocsátásokat tekintve a kibocsátási határérték kritérium értéke a 2015. évhez hasonlóan igen kicsi, $0,061 \%$ volt, amelyben a legnagyobb súllyal az ${ }^{41} \mathrm{Ar}$ és a ${ }^{14} \mathrm{C}\left(\mathrm{CO}_{2}\right)$ radionuklidok (együtt mintegy 75%-os arányban) szerepeltek. A paksi atomerőmű tehát a hatósági korlátokhoz viszonyítva igen kismértékủ légnemủ kibocsátás mellett üzemelt 2016-ban is.

7-4. ábra
Havi légköri Ar-41 kibocsátások

7.1.2 Folyékony kibocsátás

A vízzel történő radioaktív kibocsátások ellenőrzése egyrészt az ellenőrző tartályokból, másrészt a vízelvezető (V2 és V3-jelű) csatornákból vett minták mérésével folyik.

Minden, feltételezhetően radioaktív izotópot tartalmazó víz először az ellenőrző tartályokba kerül, ahol a tartály lezárását és keverését követően történik a mintavétel a vonatkozó "Kibocsátás Ellenőrzési Szabályzat" szerint. Ezekből a mintákból a kibocsátott víztérfogattal arányos heti, havi és negyedéves átlagmintákat készít az üzem. Valamennyi tartálymintából - ellenőrzés céljából - az igényelt mennyiséget a hatósági laboratórium elviheti.

Évente általában 1300 körüli tartályürítés történik, az ezekből a Paksi Atomerőmű heti átlagmintákat képez saját, és a hatósági laboratórium (BAMKH NF LO) részére, így az összes kibocsátásra került tartályvíz hatósági ellenőrzése megtörténik. A heti, havi és negyedéves átlagmintákat rendszeresen elszállitja izotópspecifikus vizsgálatokhoz.

A befolyó és elvezető csatornák (V1, V2 és V3 jelủ) vizének mérése elsősorban az esetleg nem üzemszerủen távozó szennyeződések ellenőrzése céljából történik. A kibocsátási értékek a tartályokból kiengedett víz térfogatának és aktivitáskoncentrációjának segítségével határozhatók meg pontosan.

A vízi kibocsátások ellenőrzése az egyes közegek (csatornák, tartályok vize) nuklidspecifikus mérésével történik. A méréseket az üzem rendszerint a mintavétel napján, ill. az azt követő héten dolgozza fel és méri. A BAMKH NF LO a V1 és V2 csatorna minták havi, a V3 csatorna minták havi, negyedéves, ill. szúrópróbaszerủ mintavételezését, valamint
a tartályminták (TM és XZ) heti, negyedéves, szúrópróbaszerủ mintavételezését követően azonnali feldolgozás után vizsgálja.

A V1 és V2 csatornákból származó mintákban a radionuklidok koncentrációja általában a kimutatási határ alatti. Mivel ezeket a kimutatási határ értékével vesszük figyelembe, az eredmények felülbecsültek.

Az atomerőmủ 2016-ban az ellenőrző tartályokból összesen $47164 \mathrm{~m}^{3}$ vizet bocsátott a Dunába. A legjelentősebb korróziós termék (${ }^{60} \mathrm{Co}$) éves kibocsátott aktivitása közel 8 -szor kisebb, a hasadási termékek közül a ${ }^{137} \mathrm{Cs}$ éves kibocsátása mintegy 8 -szor nagyobb volt a mérleg feletti (TM-jelû), mint a kommunális és laboratóriumi eredetű vizeknél (XZ-jelü). A TM:XZ térfogatok aránya a korábbi évekhez hasonlóan a 3:1 arányhoz közelített.

A kibocsátások év közbeni alakulásának, továbbá az üzemi és a hatósági mérési eredmények együttfutásának szemléltetésére a 7-5. ábrán bemutatjuk a folyékony kibocsátások egy jellemző radionuklidja, a ${ }^{60} \mathrm{Co}$ havi kibocsátásainak változását. A magasabb havi értékek a 1 . és a 2 . blokk karbantartásához köthetők.

7-5. ábra

Havi ${ }^{60} \mathrm{Co}$ kibocsátások a tartálymérések alapján.

7-2. táblázat
A hatóság által jóváhagyott PAE tartálymérések alapján meghatározott éves kibocsátások, 2016.

Izotóp	Kibocsátás [Bq]	Éves korlát [Bq]	Határérték kihasználása
${ }^{3} \mathrm{H}$	2,67E+13	2,90E+16	9,21E-04
${ }^{14} \mathrm{C}$	$3,42 \mathrm{E}+09$	$3,10 \mathrm{E}+12$	1,10E-03
${ }^{89} \mathrm{Sr}$	$4,04 \mathrm{E}+06$	1,20E+13	3,37E-07
${ }^{90} \mathrm{Sr}$ *	$1,49 \mathrm{E}+07$	$2,20 \mathrm{E}+12$	6,80E-06
${ }^{55} \mathrm{Fe}$	$4,66 \mathrm{E}+07$	$4,30 \mathrm{E}+13$	1,08E-06
${ }^{59} \mathrm{Ni}$	$1,98 \mathrm{E}+07$	$4,00 \mathrm{E}+14$	4,94E-08
${ }^{7} \mathrm{Be}$	$8,96 \mathrm{E}+07$	$3,00 \mathrm{E}+14$	2,99E-07
${ }^{51} \mathrm{Cr}$	$6,65 \mathrm{E}+07$	$2,70 \mathrm{E}+14$	2,46E-07
${ }^{54} \mathrm{Mn}$	$3,77 \mathrm{E}+07$	$1,00 \mathrm{E}+13$	3,77E-06
${ }^{58} \mathrm{Co}$	$2,85 \mathrm{E}+07$	$3,20 \mathrm{E}+12$	8,89E-06
${ }^{59} \mathrm{Fe}$	2,50E+07	2,30E+12	1,09E-05
${ }^{60} \mathrm{Co}$	9,26E+07	$9,50 \mathrm{E}+11$	9,74E-05
${ }^{65} \mathrm{Zn}$	2,36E+07	$1,40 \mathrm{E}+12$	1,69E-05
${ }^{95} \mathrm{Nb}$	$2,33 \mathrm{E}+07$	$2,10 \mathrm{E}+12$	1,11E-05
${ }^{95} \mathrm{Zr}$	1,77E+07	$8,50 \mathrm{E}+12$	2,08E-06
${ }^{99} \mathrm{Mo}$	3,53E+07	1,30E+14	2,71E-07
${ }^{103} \mathrm{Ru}$	$1,09 \mathrm{E}+07$	$9,00 \mathrm{E}+11$	1,21E-05
${ }^{106} \mathrm{Ru}$ *	$5,72 \mathrm{E}+07$	$1,10 \mathrm{E}+12$	5,20E-05
${ }^{110 \mathrm{~m}} \mathrm{Ag}$	3,62E+07	$2,00 \mathrm{E}+13$	1,81E-06
${ }^{124} \mathrm{Sb}$	$3,45 \mathrm{E}+07$	$9,50 \mathrm{E}+12$	3,63E-06
${ }^{125} \mathrm{Sb}$	$4,61 \mathrm{E}+07$	1,10E+13	4,19E-06
${ }^{131} \mathrm{I}$	$2,03 \mathrm{E}+07$	2,70E+12	7,50E-06
${ }^{134} \mathrm{Cs}$	5,96E+07	6,50E+11	9,17E-05
${ }^{137} \mathrm{Cs}$ *	$2,14 \mathrm{E}+08$	$9,00 \mathrm{E}+11$	2,37E-04
${ }^{140} \mathrm{Ba}$ *	$2,83 \mathrm{E}+07$	5,50E+13	5,14E-07
${ }^{141} \mathrm{Ce}$	1,64E+07	$2,10 \mathrm{E}+13$	7,79E-07
${ }^{144} \mathrm{Ce}$ *	7,46E+07	1,00E+13	7,46E-06
${ }^{154} \mathrm{Eu}$	1,41E+07	1,80E+12	7,85E-06
${ }^{181} \mathrm{Hf}$	1,60E+05	5,70E+13**	2,89E-09**
U-csoport	$1,74 \mathrm{E}+05$	7,50E+11	2,33E-07
Pu-csoport	1,76E+06	$1,00 \mathrm{E}+12$	1,76E-06
Am-csoport	$8,54 \mathrm{E}+05$	$1,10 \mathrm{E}+12$	7,76E-07
Cm-csoport	$2,22 \mathrm{E}+04$	$2,60 \mathrm{E}+11$	8,54E-08
Összesen (total):	-	-	2,61E-03

* a kibocsátási korlát kihasználás számításánál a leányelemükkel együtt vettük figyelembe az adott izotópot
** a hafnium éves korlátja 2017-ben lett jóváhagyva.

A 7-6., 7-7. és 7-8. ábrák a V1, V2 és V3 jelű helyen vett vízmintákban az üzem és a BAMKH NF LO által mért összes béta-aktivitáskoncentrációk havi átlagértékeit mutatják.

A szennyvíz csatorna (V3) összes béta-aktivitáskoncentrációja általában 5-60-szor volt nagyobb hidegvíz- (V1) és a melegvíz csatorna (V2) összes béta-aktivitáskoncentrációjánál.

7-6. ábra
A hidegvíz csatorna (V1) összes béta-aktivitáskoncentrációjának havi átlagértékei

7-7. ábra

A melegvíz csatorna (V2) összes béta-aktivitáskoncentrációjának havi átlagértékei

A szennyvíz csatorna (V3) összes béta-aktivitáskoncentrációjának havi átlagértékei.
A 7-9., 7-10. és 7-11. ábrák az egyes csatornák trícium-koncentrációjának havi átlagait mutatják.

7-9. ábra
A hidegvíz csatorna (V1) trícium koncentrációjának havi átlagértékei.

7-10. ábra
A melegvíz csatorna (V2) trícium-koncentrációjának havi átlagẻrtékei.

7-11. ábra
A szennyvíz csatorna (V3) trícium koncentrációjának havi átlagértékei.

A hidegviz és melegviz csatorna trícium koncentrációjának a dunai értékkel ($1-10 \mathrm{~Bq} / \mathrm{l}$) kell megegyeznie, a mérési adatok hasonló tartományban is mozognak. Az üzemi és hatósági adatokban az általában legfeljebb kétszeres eltérés a kis koncentrációkat tekintve elfogadható.

A ténylegesen kibocsátott trícium koncentrációja megbízhatóan a szennyvíz csatorna mintavételi pontján mérhető, havi értéke $60-320 \mathrm{kBq} / \mathrm{l}$ között változott. A hatósági adatok általában jól egyeztek az üzemiekkel, a korábbi években tapasztalt különbségek gyakorlatilag eltűntek.

A napi mintákból képzett havi átlagminták gamma-spektrometriai mérésével történt az izotóp-összetétel meghatározása (a V1 és a V2 mintáknál $15-15 \mathrm{dm}^{3}$, a V3 mintánál $9 \mathrm{dm}^{3}$ viz bepárlási száraz maradékából). Kimutatási határ ($1 \mathrm{mBq} / \mathrm{dm}^{3}$ nagyságrendủ érték) felett, mind a hidegvíz-csatorna, mind a melegvíz-csatorna mintáiban nem volt kimutatható mesterséges eredetű radioaktív izotóp.

A V3 minták átlagos radioizotóp-összetétele a tavalyi évhez képest jelentősen nem változott. 2015-höz viszonyítva a folyékony kibocsátásokkal kikerült radioaktív izotópok közül a korróziós termékek, a radiostroncium, a radiokarbon és az alfa-sugárzók kibocsátása csökkent, míg a hasadási termékek és a trícium kibocsátása növekedett.

Összességében elmondható, hogy a folyékony kibocsátásokat tekintve is igen kicsi, mindössze $0,26 \%$ a kibocsátási határérték kritérium értéke, a kibocsátásokban legnagyobb súllyal a ${ }^{3} \mathrm{H}$ és a ${ }^{14} \mathrm{C}$ radionuklidok szerepeltek. A paksi atomerőmü tehát a hatósági korlátokhoz viszonyitva igen kismértékű folyékony kibocsátás mellett üzemelt 2016-ban is.

7.1.3 Megállapítások

Az atomerőmű környezeti sugárvédelmi ellenőrzése céljából a hatósági intézmények 2016-ban összesen 6972 eredményt küldtek az adatfeldolgozó központba. A meghatározások vizsgálati irányonkénti megoszlásában az előző évekhez hasonlóan a nuklidspecifikus mérések együttes részaránya több mint 80%-os volt. A Paksi Atomerőmủ légnemủ radioaktív kibocsátása 2016-ban az üzemzavart megelőző évekhez hasonló szinten volt. A nuklidspecifikus kibocsátásokból számolható kibocsátási határérték kihazsnálás értéke 0,061 \% volt.

A folyékony radioaktív kibocsátás ellenőrzése a gyűjtőtartályokból, valamint a vízvételi (V1) és vízelvezető (V2, V3) csatornákból vett minták vizsgálatára terjed ki.

A Paksi Atomerőmű a 2016. évben is maradéktalanul elvégezte az aktivitást hordozó vizek ellenőrzését. A hatósági laboratórium (BAMKH NF LO), a Paksi Atomerőmű laboratóriumaival heti, havi és negyedéves párhuzamos mintavételből származó átlagminták mérésével ellenőrzi az üzemi és a befogadóból származó vizeket. Főként a vízhasználat biztonsága, az esetleg illegális módon kikerülő radioaktív izotópok észlelése érdekében mintázzák az üzemi és a hatósági laboratóriumok egyaránt a hideg-, meleg- és szennyvízcsatornákat (V1, V2 és V3 jelủ mintavételi helyek).

A melegvízcsatorna (V2) összes béta-aktivitáskoncentrációja közel azonos volt a bejövő hủtővíz koncentrációjával, míg a szennyvíz (V3) csatornában - amely az atomerőműi hulladékvizek tényleges kibocsátási útvonala - ezekhez képest kb. 10-15-szörös összes bétakoncentráció alakult ki. Jóval nagyobb és erősen ingadozó a kikerülő szennyvíz (V3-csatorna) trícium koncentrációja. A vízzel kibocsátott aktivitás meghatározása megbízhatóan az ellenőrző tartályokból leeresztett vizek mérésével történik. A nagyobbrészt üzemi, kisebb részben hatósági mérésekre alapozott folyékony kibocsátásokból számolható kibocsátási határérték kihasználásának értéke 2016-ban a korábbiakhoz hasonló, $0,26 \%$ volt.

A fentiek alapján megállapítható, hogy az üzem a tárgyévben betartotta a kibocsátásokra elöírt hatósági korlátokat.

A környezeti minták többségénél - a talaj, szedimentum minták kivételével - a csernobili eredetủ szennyeződés már nem, vagy csak nagy hibával volt mérhető

A légköri aeroszol és fall-out vizsgálatok alapján valószínűsíthető, hogy az üzem - az előzö évhez hasonlóan - PAE eredetủ radioizotópot nem mutatott ki.

A Duna rendszeres monitorozása az erőmủ előtt Paksnál és Dunaföldvárnál, utána pedig Gerjennél, Kalocsánál, Bajánál és Mohácsnál történik. Itt erőművi eredetű nuklid nem volt kimutatható.

A felszíni vizek üledék mintáiban, ill. a talajban a csernobili eredetű ${ }^{137} \mathrm{Cs}$ koncentrációja az alapszintet még meghaladja.

A környezeti dózisteljesítmény 20-30 \%-os földrajzi, évszakos stb. ingadozása mellett az erőműből származó kis sugárterhelés méréssel nem mutatható ki.

Az erőmủ 2016. évi üzemelése során a környezet radioaktív szennyeződése miatt hatósági intézkedésre nem volt szükség.

A kibocsátásokra vonatkozó hatósági határérték kihasználásának értékei láthatóak a 7 3. táblázatban. Az értékek azt tükrözik, hogy az üzem több nagyságrenddel a megállapított határértékek alatt működött 2016-ban.

7-3. táblázat
 A kibocsátási határérték kritérium értékei 2016-ben

Kibocsátási határérték kritérium	(\%)
Légnemű kibocsátásokra	0,061
Folyékony kibocsátásokra	0,26
Összesen	0,32

A 7-4. táblázat a kibocsátásokat nemzetközi összehasonlításban tartalmazza. Látható, hogy a paksi erőműnél a légköri jód és a vízi hasadványtermék kibocsátások a világátlag alattiak, a többi e-feletti.

7-4. táblázat

A villamosenergia termelésre (1 GW •év egységre) normált radioaktív kibocsátások 2016-ben a PWR típusú reaktorokra vonatkozó nemzetközi összehasonlításban.[14] (Az erőmű 2016-ban 1,8 GW•év elektromos energiát termelt.)

Kibocsátás	Mennyiség	PAE	$\begin{aligned} & \text { UNSCEAR } \\ & (1998-2002) \\ & \hline \end{aligned}$
légköri	nemesgáz összesen (TBq)	13	11
	aeroszol összesen (GBq)	0,44	0,03
	$\mathrm{H}-3(\mathrm{HT}+\mathrm{HTO})(\mathrm{TBq})$	2,6	2,1
	$\mathrm{C}-14\left(\mathrm{CO}_{2}+\right.$ szerves) (TBq)	0,38	0,22
	jódok ($\mathrm{I}-131$ egyenérték) (GBq)	0,009	0,3
folyékony	korróziós és hasadványtermékek összesen (GBq)	0,65	11
	$\mathrm{H}-3$ (TBq)	16	20

Az összevetésből kitűnik, hogy a 2016. évi paksi légköri kibocsátások adatai - a radiojódokat kivéve - fölötte vannak a PWR típusú reaktorok 1998-2002. közötti világátlagának, amely a reaktorok életkorával, a kibocsátott izotópok meghatározásával és a 4 .
blokki kismértékű inhermetikussággal függ össze. A korróziós és hasadási termékek látszólagos növekedése azzal magyarázható, hogy az új szabályozás szerint a kibocsátási adatokat izotópszelektív mérésekből határozza meg az atomerőmű, a nem mért izotópokat pedig a kimutatási határértékkel veszi figyelembe. A radiojódok kibocsátása alatta van a világátlagnak. 2016-ban az atomerőmű radioaktív nemesgáz kibocsátásai az előző két évhez hasonlóan alakult. A légnemü trícium és radiokarbon kibocsátási értéke valamivel magasabb az éves világátlagénak.

Az érzékeny mérések ellenére is előfordul, hogy a mérendő aktivitás a kimutatási határnál kisebb. Megállapodás szerint a korlátozás alá eső radioaktív komponensek esetén a kimutatási határ alatti értékeknél a kimutatási határt jegyezzük fel, s a feldolgozás ezen értékkel történik. Az így kapott átlagérték a valódinál mindig nagyobb lesz, azaz felülbecslést végzünk. A hatóságilag szabályozott mennyiségeknél a kimutatási határ általában nagyságrendekkel a megállapított korlátnak megfelelő érték alatt van.

7.2 Az NRHT

7.2.1 A föld felszíni telephely folyékony kibocsátás értékelése

A telephely felszíni folyékony kibocsátásának számítását a csapadék mennyiségből, valamint a technológiai épület gyűjtőtartályából történő kibocsátásból végeztük.

A csapadékgyűjtỏ aknából a mintavételek havi rendszerességgel történtek. A kibocsátott csapadék mennyisége összesen $1359 \mathrm{~m}^{3}$ volt a 2016. évben. A csapadék havi mennyiségéből illetve az adott hónapban mért izotópkoncentráció ismeretében számítottuk a kibocsátott mennyiséget.

A Technológiai Épület tartályparkjából 2016. március 20 -án $12 \mathrm{~m}^{3}$ kémiai és radiológiai szempontból is minősített ipari szennyvíz került kibocsátásra a kommunális szennyvízgyüjtő csatornába. A tartályból kibocsátott összaktivitás trícium esetében $1,01 \mathrm{E}+04 \mathrm{~Bq}$, radiokarbon esetében $2,39+03 \mathrm{~Bq},{ }^{90} \mathrm{Sr}$ esetében $1,14 \mathrm{E}+01 \mathrm{~Bq}$ volt.

A csapadékgyűjtő aknákból, valamint a folyékonykibocsátás-ellenőrzés utolsó mérési pontjaként üzemeltetett Rocla és Drain kifolyók mintázásából és méréséből kapott radionuklid koncentrációk megerősítik, hogy a telephely nem bocsátott ki - a természetes alapszint felméréshez viszonyítva - többlet aktivitást egyetlen mért radionuklid esetében sem. Mesterséges eredetú izotópot nem mutattunk ki egyetlen mért mintában sem.

A trícium aktivitása a természetes éves ciklust követve összevethető a magyarországi csapadékvizekével, az értékekben a természetes szezonális ingadozás jól tapasztalható. A havi csapadék mennyiségével, a kibocsátott szennyvíz mennyiségével, illetve a vonatkozó trícium koncentrációkkal számolva a felszíni telephelyről folyékony formában kibocsátott trícium: $2,28 \mathrm{E}+06 \mathrm{~Bq} /$ év, miközben a kibocsátási határéték $3,5 \mathrm{E}+12 \mathrm{~Bq} /$ év.

A kibocsátott vizek radiokarbon értékei sem utalnak anomális kibocsátásra. A csapadékaknákból gyüjtött éves átlagminta és a tartályparkból kibocsátott szennyvíz mennyiségéből valamint a vonatkozó radiokarbon koncentrációkból számítva a telephely föld felszíni létesítményének becsült radiokarbon kibocsátása folyékony formában: $7,2 \mathrm{E}+04 \mathrm{~Bq} /$ év miközben a kibocsátási határérték $1,10 \mathrm{E}+10 \mathrm{~Bq} / \mathrm{év}$.

7.2.2 A föld felszíni telephely légnemű kibocsátás értékelése

Az LK-1 kémény F\&J típusú aeroszol szűrőjén mért aktivitás reprezentálja a légkörbe kikerülő aktivitás mértékét. Az F\&J típusú mintavevők szűrőkorongjait kétheti (illetve a telítődés függvényében heti) rendszerességgel mintáztuk és mértük. A Technológiai épület szellőzőkéményében elhelyezett automata mintavevő berendezés mintáiból trícium és radiokarbon, az F\&J típusú aeroszol szűrơjéből gamma aktivitásmérés történik a kibocsátási aktivitás meghatározása céljából.
A mérések során a kéményen keresztül a légkörbe jutó szennyezők között mesterséges radioizotópot nem mutattunk ki.
A Technológiai csarnok kéményében mért C-14 aktivitás-koncentráció figyelembe vételével számításaink alapján a 2016 -os évben a föld felszíni technológiai létesítmény $2,75 \mathrm{E}+07 \mathrm{~Bq} \mathrm{C}$ 14 aktivitást juttatott a légkörbe, miközben a kibocsátási határérték $7,1 \mathrm{E}+12 \mathrm{~Bq}$. Ehhez azonban még hozzájárul a felszín alatti térrészből származó kibocsátás, amelynek értékelése a következő fejezetben található.
A Technológiai csarnok kéményében mért trícium aktivitás-koncentráció alapján a föld felszíni technológiai létesítmény a 2016 -os évben $4,23 \mathrm{E}+07 \mathrm{~Bq} \mathrm{H}-3$ aktivitást juttatott a
légkörbe, miközben a kibocsátási határérték $5,9 \mathrm{E}+15 \mathrm{~Bq}$. Ehhez hozzájárul a felszín alatti térrészből származó kibocsátás, amelynek értékelése következő fejezetben található.

7.2.3 A felszín alatti térrész légköri kibocsátásának értékelése

A felszín alatti térrészben két helyszínen (az 1. sz. összekötő vágatnál és az ellenőrzött zóna határánál) nagyobb mintamennyiség vételére alkalmas F\&J típusú mintavevőket üzemeltettünk. Az aeroszol gyüjtő korongokat kétheti rendszerességgel cseréltük és gammaméréshez használtuk fel.
Az aeroszol mintákban kimutatási határt elérő koncentrációban mesterséges izotópokat nem mutattunk ki.

Az ellenőrzött zóna határánál végzett radiokarbon és trícium mintavételek átlagértékei nem utalnak anomáliára. A számított éves kibocsátás trícium esetében $3,72 \mathrm{E}+07 \mathrm{~Bq}$, radiokarbon esetében $3,38 \mathrm{E}+08 \mathrm{~Bq}$ volt, mikörben a kibocsátási határértékek rendre $5,90 \mathrm{E}+15 \mathrm{~Bq} /$ év illetve $7,10 \mathrm{E}+12 \mathrm{~Bq} /$ év volt.

A fentiekben emlitett aerosol mintavevőkkel azonos helyszíneken a levegőben mérhető radon koncentráció nyomon követését is végrehajtottuk. Méréseink alkalmával bebizonyosodott, hogy - köszönhetően a rendkívül intenzív szellőztetésnek - a radonkoncentráció átlagosan $20-40 \mathrm{~Bq} / \mathrm{m}^{3}$ között ingadozott. A konzervatívan becsült éves kibocsátás a légtechnikai berendezés légszállítási teljesítményét figyelembe véve, $40 \mathrm{~Bq} / \mathrm{m}^{3}$ átlagos koncentrációval számolva: 4,58E+10 Bq/év.

7.2.4 A felszín alatti térrész folyékony kibocsátásának értékelése

Az ellenőrzött zsomp és az I-K1 kamra nyaktag helyszínen vett vízminták C-14 és H-3 eredményeiből alapján a hulladék elhelyezés megkezdése nem növelte meg az említett radionuklidok jelenlétét. Gamma-sugárzó izotópok közül mesterséges eredetủek nem voltak kimutathatóak.
Az ellenőrzött zónai felszín alatti térrészből kibocsátott vízmennyiség a 2016. évben 24499 m^{3} volt. Az erre a mennyiségre számított C -14 kibocsátás: $3,68 \mathrm{E}+06 \mathrm{~Bq}$ /év. Tríciumra ez az érték hasonló számítással: $1,95 \mathrm{E}+07 \mathrm{~Bq} /$ év.

7.2.5 A létesítmény összesített kibocsátásának értékelése

7.2.5.1 A telephely felszíni és felszín alatti összesített légköri kibocsátásának értékelése

A KHK teljesülését - a hatósági előírások szerint - az alábbi összefüggés alapján igazoljuk:
A kibocsátási határérték kritérium:

$$
\sum_{i j} \frac{R_{i j}}{E L_{i j}} \leq 1
$$

ahol:

$$
\begin{array}{ll}
\mathrm{EL}_{\mathrm{ij}}= & \begin{array}{l}
\text { az i radionuklid, illetve radionuklid csoport } \mathrm{j} \text { kibocsátási módra } \\
\text { (légnemú, vagy folyékony) vonatkozó kibocsátási határértéke [Bq/év] }]
\end{array} \\
\mathrm{R}_{\mathrm{ij}}=\quad \begin{array}{l}
\text { az i radionuklid, illetve radionuklid csoport } \mathrm{j} \text { kibocsátási módra } \\
\text { (légnemű, vagy folyékony) vonatkozó éves kibocsátása }[\mathrm{Bq} / \text { /év] }]
\end{array} .
\end{array}
$$

A kibocsátási határérték kritériumok teljesülésére vonatkozó adatok táblázatos formában a következőkben kerülnek bemutatásra:

7-5. táblázat

A radioaktívhulladék-tároló légköri kibocsátásaira meghatározott kibocsátási határértékek ($100 \mu \mathrm{~Sv} / \mathrm{év}$ dózismegszorítás a lakosság kritikus csoportjára)

Radionuklid	Felszini Riéegnemüú [$\mathrm{Bq} / \mathrm{év} \mid$	Felszin alatti Rictegnemú [$\mathrm{Bq} / \mathrm{év}$]	Felszini és felszin alatti összesített érték $\sum R_{i \text { legnemu }}$ [Bq/év]	ELitégnemŭ [$\mathrm{Bq} / \mathrm{év}$] (Kibocsátási határérték)	$\frac{R / d \mathrm{dgn}}{E L_{i t i d g n}}$
H-3 ${ }^{\text {(vizgōz) }}$	4,23E+07	$3,72 \mathrm{E}+07$	7,95E+07	$5,90 \mathrm{E}+15$	1,35E-08
C-14	2,75E+07	$3,38 \mathrm{E}+08$	3,66E+08	$7,10 \mathrm{E}+12$	5,15E-05
Rn-222	-	$4,58 \mathrm{E}+10$	$4,58 \mathrm{E}+10$	$1,00 \mathrm{E}+14$	4,58E-04
$\begin{aligned} & \sum_{i l e ́ g n} \frac{R_{\text {ilugn }}}{E L_{l l e g n n}} \\ & \text { (KHK-érték) } \end{aligned}$					5,09E-04

A felszíni légnemủ kibocsátás az LK-1 kémény, a felszin alatti az LK-2 zónahatáron mért eredmény alapján került kiszámításra. A kimutatási határt el nem érő izotópokat, illetve mérési eredményeket nem vettük számításba.

A légnemủ kibocsátás 2016.évben a mérési adatok alapján a korlát 0,0509 \%-a volt.

7.2.5.2 A telephely felszíni és felszín alatti összesített folyékony kibocsátásának értékelése

7-6. táblázat

A radioaktívhulladék-tároló vízi kibocsátásaira meghatározott kibocsátási határértẻkek ($100 \mu \mathrm{~Sv} /$ év dózismegszorítás a lakosság kritikus csoportjára)

Radionuklid	Felszini összesitett érték $\mathbf{R i}_{\text {i olyekony }}$ [$\mathrm{Bq} /$ /év]	Felszin alatti összesitett érték Ri rolyekony [$\mathrm{Bq} / \mathrm{Cev}$]	Felszini és felszín alatti összesitett érték $\sum \mathrm{R}_{\mathrm{i}}$ folyêkony [Bq/év]	ELi rolyêkony [Bq/év] (Kibocsátási határérték)	$\frac{R_{\text {folyekony }}}{E L_{\mathrm{t}} \text { folyékony }}$
H-3 ${ }^{\text {(vizgōz) }}$	2,28E+06	$1,95 \mathrm{E}+07$	$2,18 \mathrm{E}+07$	$3,50 \mathrm{E}+12$	6,23E-06
C-14	7,20E+04	$3,68 \mathrm{E}+06$	3,75E+06	$1,10 \mathrm{E}+10$	3,41E-04
Sr-90	5,61E+04	$1,57 \mathrm{E}+04$	$7,18 \mathrm{E}+04$	$2,80 \mathrm{E}+08$	2,56E-04
$\sum_{\substack{\text { ifoly } \\ \text { (KHK-érték) }}} \frac{R_{\text {ifolyékon }}}{E L_{\text {folyekor }}}$					6,04E-04

A felszíni kibocsátás az Ua1, Ua2 csapadékgyűjtő aknák és a technológiai épület gyüjtőtartály, a felszín alatti kibocsátás az ellenőrzött zsomp mintáinak mért eredményei alapján került kiszámításra. A kimutatási határt el nem érő izotópokat illetve mérési eredményeket nem vettük számításba.

A légnemü kibocsátás 2016-ben-ben a mérési adatok alapján a korlát 0,0604 \%-a volt.

7.3 Az RHFT

Az RHFT környezeti kibocsátási korlátait a Baranya Megyei Kormányhivatal Környezetvédelmi és Természetvédelmi Főosztálya által jóváhagyott SZ-3150 számú Kibocsátás Ellenőrzési Szabályzat határozza meg.

Az RHFT esetében radioaktív kibocsátás az üzemi épületből és kültéri tárolótérről történhet. 2016. évben a radioaktív hulladékok beszállitása, feldolgozása és elhelyezése során hatósági korlátot meghaladó radioaktív anyag kibocsátás nem történt. Az illetékes környezetvédelmi hatóság felé a jogszabályokban előírt jelentési kötelezettségeknek eleget tettünk.

Az üzemeltetési tevékenység során keletkező kis mennyiségű (évente maximum $0,5 \mathrm{~m}^{3}$) radioaktiv folyékony hulladékot zárt rendszerủ tartályokban tároljuk, ezekből a tárgyév folyamán kibocsátás nem történt.

A csapadékvíz-tározóból kibocsátott vízben csak a természetben előforduló, illetve a tárolókból diffúzióval a légkörbe jutott és onnan kimosódott radionuklidokat sikerült kimutatni.

7.3.1 Üzemi épület kibocsátásainak ellenőrzése

Az üzemi épületben a trícium és radiokarbon forrásai az épület pinceszintjén, az Átmeneti Tárolóban tárolt trícium és/vagy radiokarbon tartalmú hulladékok, valamint a kezelés alatt álló folyékony hulladékok. A hulladékcsomagokból a ${ }^{222} \mathrm{Rn}$, a ${ }^{3} \mathrm{H}$ és a ${ }^{14} \mathrm{C}$ légnemű formában tud kiszabadulni.

A tárolásból és hulladékfeldolgozásból származó trícium és radiokarbon kibocsátás a szellőzőkéményben üzemelő trícium-radiokarbon mintavevők adataiból és a névleges szellőzési teljesítményből ($3200 \mathrm{~m}^{3} / \mathrm{h}$) került meghatározásra. A kibocsátásellenőrző mérések eredményei alapján az éves trícium kibocsátás ($8,32 \mathrm{E}+10 \mathrm{~Bq} /$ év) a korábbi évekhez hasonlóan alakult, a radiokarbon kibocsátás ($1,75 \mathrm{E}+10 \mathrm{~Bq} /$ év) az előző évhez képest kismértékben emelkedett, a korábbi évekhez viszonyítva továbbra is alacsony. Az éves radon kibocsátás a pinceszinti aeroszol mintavevő mérési eredményei és a szellőző rendszer névleges térfogatárama alapján $1,03 \mathrm{E}+10 \mathrm{~Bq} /$ év értékre adódott.

Az üzemi épület kéményének szélirányába eső alfa és béta aeroszolaktivitáskoncentráció mérő monitor adatai a korábbi években mértektől nem térnek el jelentősen, a természetes háttérnek megfelelő aktivitásokat mutattak.

Az üzemi épület kéményébe telepített aeroszol mintavevőből származó mintákban mesterséges eredetű izotópokat $\left({ }^{241} \mathrm{Am}\right)$ öt alkalommal mutattunk ki a kimutatási határt kis mértékben meghaladó koncentrációban $\left(\sim 0,01 \mathrm{mBq} / \mathrm{m}^{3}\right)$. A fenti kibocsátás az RHFT üzemi épületének légtechnikai rekonstrukciójához kapcsolódott. A rekonstrukció részeként elbontásra került a korábbi elszívó csőrendszer. A szellőző csövek bontása során a lerakódott porból felporzás jött létre. A kibocsátás a kimutathatóság határán volt detektálható, ami a mintavétel során kibocsátott levegỏ mennyiséget figyelembe véve $4,94 \mathrm{E}+03 \mathrm{~Bq}$ kibocsátott összes aktivitást jelentett 2016-ban.

7.3.2 Tárolóterület folyékony kibocsátásainak ellenörzése

A $100 \mathrm{~m}^{3}$-es csapadéktározó medence az „A" típusú hulladéktárolók környezetében, a III. IV medencesorról gyűjti össze a csapadékvizeket. A $60 \mathrm{~m}^{3}$-es csapadéktározó medence az A típusú I, II medencesorról és a „B", „C" és „D" tárolókról gyűjti a csapadékvizet. A csapadéktározók a vizei kibocsátás előtt, illetve ha nincs kibocsátás, akkor is félévente kerül mintázásra kerülnek.

A $100 \mathrm{~m}^{3}$-es csapadéktározó medencéből 7 alkalommal, összesen $533 \mathrm{~m}^{3}$, míg a $60 \mathrm{~m}^{3}$ esből 6 alkalommal összesen $165 \mathrm{~m}^{3}$ csapadékvíz lett kibocsátva a 2016. év során. A vizsgált minták gamma-spektrumában technológiai eredetű szennyeződésre utaló ${ }^{137} \mathrm{Cs}$ és ${ }^{60} \mathrm{Co}$ izotópok jelenléte nem volt kimutatható.

A $100 \mathrm{~m}^{3}$-es csapadéktározóban mért ${ }^{90} \mathrm{Sr}$ aktivitás-koncentráció év közben 0,20 $1,9 \mathrm{mBq} / \mathrm{dm}^{3}$ értékủ volt, a $60 \mathrm{~m}^{3}$-es csapadéktározóban mért pedig $0,20-2,1 \mathrm{mBq} / \mathrm{dm}^{3}$. Ezek az értékek megfelelnek a felszíni vizekben mérhető értékeknek.

A telephelyről származó, csapadékvízzel kibocsátott trícium mennyisége $10,7 \mathrm{MBq}$, a ${ }^{14} \mathrm{C}$ izotóp mennyisége $19,9 \mathrm{kBq}$ volt. Ennek a mennyiségnek egy része a tárolóból a betárolás és a hulladékcsomagok mozgatása során, diffúzió révén szabadul ki, a másik része a tárolóból közvetlenül a talajlevegőbe, majd onnan a csapadéktározóba diffundáló izotópokhoz köthető. A becsült folyékony közegbe történt kibocsátás nagyságrendekkel a kibocsátási korlát alatt marad, hatása sugárvédelmi szempontból elhanyagolható.

7.3.3 Tárolóterületi gázdiffúzió ellenőrzése

Légköri kibocsátásként a hulladékot tartalmazó hordókból gázdiffúzióval távozó gázokat, ill. elhelyezésekor, a tárolók megnyitásakor a légkörbe távozó aktivitást kell figyelembe venni.

Az üzemi épület melletti PSZ-2, illetve a tároló terület mellett az uralkodó széliránynak megfelelő pozícióban található PSZ-1 mintavevő az év során egyenletes mérési eredményeket produkált, trícium és radiokarbon esetében az egyedi mintákban mért értékek $0,05-0,9 \mathrm{~Bq} / \mathrm{m}^{3}$ között változtak. A radiokarbon légköri koncentrációja a PSz-1 és PSz-2 mintavételi helyeken a korábbi évekhez hasonlóan alakult 2016-ban.

7.3.4 Összesített kibocsátások

A mért, illetve becsült kibocsátási értékek messze az éves kibocsátás határértékek alatt maradnak, az éves korlát 0,243\%-át érik el. 2016-ban a jelentési kötelezettséget elérő normál üzemi kibocsátás, illetve a normál üzemtől való eltérésből eredő kibocsátás nem történt. A telephely összesített kibocsátásait a 6 . táblázat szemlélteti.

7-7. táblázat
A telephely összesített kibocsátásai

Kibocsátás jellege	Vizsgált izotópok	Mért vagy becsült aktivitás (Bq/év)	Éves korlát $\mathbf{3 0 \% - a}$ (Bq/év)	Éves korlát (Bq/év)
Légköri	${ }^{3} \mathrm{H}$	$8,32 \mathrm{E}+10$	$1,72 \mathrm{E}+14^{(1)}$	$5,72 \mathrm{E}+14^{(1)}$
	${ }^{14} \mathrm{C}$	$1,75 \mathrm{E}+10$	$2,39 \mathrm{E}+12^{(1)}$	$7,97 \mathrm{E}+12^{(1)}$
	${ }^{55} \mathrm{Kr}$	$1,00 \mathrm{E}+03$	$8,70 \mathrm{E}+16^{(1)}$	$2,90 \mathrm{E}+17^{(1)}$
	${ }^{241} \mathrm{Am}$	$4,94 \mathrm{E}+03$	$1,24 \mathrm{E}+09^{(1)}$	$4,12 \mathrm{E}+09^{(1)}$
Folyékony	${ }^{3} \mathrm{H}$	$1,07 \mathrm{E}+07$	$3,51 \mathrm{E}+11^{(1)}$	$1,17 \mathrm{E}+12^{(1)}$
	${ }^{14} \mathrm{C}$	$1,99+04$	$2,50 \mathrm{E}+08^{(1)}$	$2,50 \mathrm{E}+08^{(1)}$
	${ }^{90} \mathrm{Sr}$	$4,93 \mathrm{E}+02$	$1,10 \mathrm{E}+10^{(1)}$	$3,67 \mathrm{E}+09^{(1)}$

(1) 3271-12/2016 számú BAM KH határozat szerint

A folyékony és légnemủ radioaktív kibocsátás több nagyságrenddel a hatósági korlát alatt alakult, a légnemú kibocsátás a vonatkozó hatósági korlát $0,243 \%$-a, a folyékony kibocsátás (kizárólag csapadékvíz) a hatósági kibocsátási határérték 0,009\%-a volt.

7.4 A Kutatóreaktor

A Budapesti Kutatóreaktor (BKR) hatósági engedélye a Baranya megyei Kormányhivatal $9104-4 / 2015 \mathrm{sz}$. módosító határozata alapján légnemű és folyékony kibocsátási határétékeket tartalmaz.

Légköri kibocsátás a BKR és az Izotóp Intézet kft. „A" szintű izotóplaboratóriumainak közös 80 m magas kéményén keresztül történik, a szűrt levegő radioaktivitását mindkét ágban külön és az ágak egyesitése után a közös szakaszban is mérik. Az alábbi adatok a BKR kibocsátására vonatkoznak.

7-8. táblázat
A reaktor légköri kibocsátásai

Radionuklid	Éves kibocsátási határérték $\|\mathrm{Bq}\|$	Tényleges kibocsátott érték $[\mathrm{Bq} \mid$	Kibocsátási határérték kritérium az adott izotópra
$\mathrm{Ar}-41$	$3,30 \mathrm{E}+15$	$3,65 \mathrm{E}+13$	$1,11 \mathrm{E}-02$
$\mathrm{Kr}-85 \mathrm{~m}$	$2,53 \mathrm{E}+16$	$2,46 \mathrm{E}+11$	$9,71 \mathrm{E}-06$
$\mathrm{Kr}-87$	$5,24 \mathrm{E}+15$	$5,60 \mathrm{E}+11$	$1,07 \mathrm{E}-04$
$\mathrm{Kr}-88$	$5,28 \mathrm{E}+13$	$5,25 \mathrm{E}+11$	$9,95 \mathrm{E}-03$
Xe-133	$1,21 \mathrm{E}+17$	$2,30 \mathrm{E}+11$	$1,90 \mathrm{E}-06$
Xe-135	$1,63 \mathrm{E}+16$	$3,60 \mathrm{E}+11$	$2,21 \mathrm{E}-05$
$\mathrm{\Sigma}$ kibocsátási határérék kritérium:	0,021		

Megjegyzés: 1682,8 teljesitett üzemóra (10 MW teljesítményen)
Folyékony kibocsátás: a két $150 \mathrm{~m}^{3}$-es tartályban összegyűjtött szennyvizet ioncserélö gyantán átvezetve bocsátják a közcsatornába.

7-9. táblázat
A reaktor vízi kibocsátásai (2016-ban nem volt folyékony kibocsátás)

Radionuklid	Éves kibocsátási határérték $/ \mathrm{Bq} / \mathrm{l}$	Tényleges kibocsátott érték $/ \mathrm{Bq} / \mathrm{l}$	Kibocsátási határérték kritérium az adott izotópra
$\mathrm{Sc}-46$	$8,76 \mathrm{E}+11$		
$\mathrm{Cr}-51$	$7,87 \mathrm{E}+13$		
$\mathrm{Mn}-54$	$2,49 \mathrm{E}+12$		
$\mathrm{Co}-60$	$1,02 \mathrm{E}+12$		
$\mathrm{Zn}-65$	$9,90 \mathrm{E}+12$		
$\mathrm{Ag}-110 \mathrm{~m}$	$1,59 \mathrm{E}+13$		
$\mathrm{Sb}-124$	$1,14 \mathrm{E}+13$		
$\mathrm{Sb}-125$	$3,78 \mathrm{E}+13$		
$\mathrm{Cs}-137$	$3,13 \mathrm{E}+12$		
$\mathrm{H}-3$	$9,26 \mathrm{E}+15$		
\sum kibocsáta kritérium: határérték	0		

Megjegyzés: Nem terveztek és nem is volt folyékony kibocsátás 2016-ban.
Összesített kibocsátási mutató 2016-ban: 0,021

7.5 Az Oktatóreaktor

Légnemű kibocsátás:

A légnemű kibocsátás ellenőrzése a reaktorépület szellőzőrendszerének szívó ágára telepített mellékág levegőjének folyamatos GM-csöves mérésével, továbbá a mellékág levegöjéből kiszürt aeroszol havi összesbéta-számlálásával történik. 2016-ban $1,40 \cdot 10^{9} \mathrm{~Bq}$ ${ }^{41}$ Ar-egyenértékű aktivitást (ez az éves kibocsátási korlát $0,186 \%-\mathrm{a}$), aeroszolhoz kötötten pedig $1,74 \cdot 10^{4} \mathrm{~Bq}$ összesbéta-aktivitást bocsátottunk ki a levegöbe; amelyek lényegében megfelelnek az elmúlt évek kibocsátásainak.

Folyékony kibocsátás:

Az alkalomszerűen kibocsátott hulladékvíz aktivitáskoncentrációjának (${ }^{137} \mathrm{Cs}-$ egyenértékben történő) meghatározása úgy történik, hogy kibocsátás előtt szcintillációs detektorra alapozott mérörendszer segítségével felvesszük a kibocsátandó hulladékvíz 450 ml es reprezentatív mintájának a gamma-spektrumát. 2016-ban $1,81 \cdot 10^{5} \mathrm{~Bq}{ }^{137} \mathrm{Cs}$-egyenértékű aktivitást bocsátottunk ki a közcsatornába (ez az éves kibocsátási korlát $1,1 \cdot 10^{-3} \%-\mathrm{a}$), ami lényegében megfelel az elmúlt évek kibocsátásainak.

7-10. táblázat

A levegőben lévő, aeroszolhoz kötött radioaktív izotópok aktivitáskoncentrációja havi átlagban ($\mathrm{Bq} / \mathrm{m} 3$, heti 3 mintavétel alapján), a rövid felezési idejű radon-leányelemek lebomlása után

	Összesbéta aktivitás $\left(\mathbf{B q} / \mathbf{m}^{\mathbf{3}}\right)$	Összesgamma aktivitás $\left(\mathbf{B q} / \mathbf{m}^{3}\right)$			
Január	$5,01 \times 10^{-4}$	$<7,78 \times 10^{-3}$	$	$	$\left\langle 1,00 \times 10^{-3}\right.$
:---					

7.6 Az Izotóp Intézet Kft.

Folyékony kibocsátás

Az Izotóp Intézet Kft. kiemelt és egyéb létesítményeiben a következők szerint keletkeznek radionuklidokkal terhelt szennyvizek:
Kiemelt létesítmények

- XVII. sz. épület „A" szintű laboratóriumaiból I-125, I-131, Fe-59, Ir-192, Co-60, Ho166
- XXII/B sz. épület „A" szintű laboratóriumaiból Co-60

Egyéb létesítmények

- XXI/A sz. épület „ B " és „C" szintű laboratóriumaiból H-3, C-14
- XXI/B sz. épület „B" és „C" szintű laboratóriumaiból I-125

A keletkezett szennyvizeket külön csatornarendszeren keresztül az épületek alsó szintjén elhelyezett, vagy földalatti tartályokba gyűjtik, a tartályok össze vannak kötve a telephelyi garázsok/tárolók alatt elhelyezkedő $3 \mathrm{db} .80 \mathrm{~m}^{3}$-es tartállyal. Az Izotóp Intézet Kft. folyékony radioaktív anyag kibocsátása csak egy útvonalon, a $80 \mathrm{~m}^{3}$-es tartályokból történik.

Légnemú kibocsátás

Az Izotóp Intézet Kft. működése során az alább felsorolt radioaktív anyagok levegőbe irányuló kibocsátását kell figyelembe venni.
Kiemelt létesitmények
XVII és XXII/B épület „A" szintű laboratóriumaiból a reaktorral közös 80 m -es kéményen keresztül I-131 és I-125 radionukliddal szennyezett levegő. A többi radionuklid a felhasználás hőmérsékletén nem illékony, így légköri kibocsátásukkal nem kell számolni.
Egyéb létesítmények
A XXI/B épület „B" szintű laboratóriumaiból I-125 radionukliddal szennyezett levegő az épület tetején lévő, szűrővel felszerelt kéményeken keresztül.
A XXI/A épület „B" és „C" szintű laboratóriumaiból H-3, C-14 radionukliddal szennyezett levegő az épület tetején lévő, szűrővel felszerelt kéményeken keresztül.

7-11. táblázat
Folyékony kibocsátási adatok 2016-ban

Radionuklid	Éves liboesátási határérték ($\mathbf{B q}$ /év)	Tervezett kibocsátás (Bq/év)	Ténylegesen kibocsátott érték $(\mathbf{B q} /$ /ev $)$	Kibocsátási határértek kritérium $(\mathrm{Bq} / \mathrm{c} v)$
$\mathrm{H}-3$	$8,1 \mathrm{E}+15$	$3,80 \mathrm{E}+11$	0	0
$\mathrm{C}-14$	$1,1 \mathrm{E}+13$	$1,10 \mathrm{E}+11$	$7,22 \mathrm{E}+10$	$6,56 \mathrm{E}-03$
$\mathrm{Fe}-59$	$6,3 \mathrm{E}+13$	$1,00 \mathrm{E}+09$	$4,08 \mathrm{E}+07$	$6,48 \mathrm{E}-07$
$\mathrm{Co}-60$	$8,4 \mathrm{E}+12$	$2,80 \mathrm{E}+09$	$1,86 \mathrm{E}+09$	$2,22 \mathrm{E}-04$
$\mathrm{Sr}-90$	$3,60 \mathrm{E}+12$	$2,70 \mathrm{E}+08$	0	0
$\mathrm{Y}-90$	$4,7 \mathrm{E}+14$	$1,20 \mathrm{E}+09$	0	0

Mo-99	$3,1 \mathrm{E}+14$	$1,20 \mathrm{E}+10$	0	0
Tc-99m	$9,3 \mathrm{E}+16$	$1,60 \mathrm{E}+09$	0	0
$\mathrm{I}-125$	$4,5 \mathrm{E}+12$	$3,20 \mathrm{E}+10$	$2,54 \mathrm{E}+09$	$5,64 \mathrm{E}-04$
$\mathrm{I}-131$	$3,3 \mathrm{E}+12$	$1,00 \mathrm{E}+09$	$2,31 \mathrm{E}+07$	$6,99 \mathrm{E}-06$
$\mathrm{Cs}-137$	$4,5 \mathrm{E}+11$	$5,00 \mathrm{E}+08$	$8,65 \mathrm{E}+07$	$1,92 \mathrm{E}-04$
Sm-153	$2,00 \mathrm{E}+15$	$5,00 \mathrm{E}+10$	0	0
Ho-166	$2,7 \mathrm{E}+14$	$3,00 \mathrm{E}+10$	$7,60 \mathrm{E}+06$	$2,81 \mathrm{E}-08$
$\mathrm{Lu}-177$	$2,30 \mathrm{E}+14$	$2,30 \mathrm{E}+10$	0	0
Re-186	$1,60 \mathrm{E}+10$	$1,60 \mathrm{E}+07$	0	0
Re-188	$1,60 \mathrm{E}+12$	$1,60 \mathrm{E}+09$	0	0
$\mathrm{Ir}-192$	$8,00 \mathrm{E}+13$	$1,00 \mathrm{E}+09$	0	0
\quad Kibocsátási határérték kritérium összesen	$\mathbf{7 , 5 5 E}-03$			

7-12. táblázat
Légnemú kibocsátási adatok, „A" szintű laboratóriumokból a reaktor kéményen keresztül 2016-ban

Radionuklid	Éves kibocsátási határérték (Bq)	Tervezett kibocsátás (Bq/év)	Ténylegesen kibocsátott érték (Bq)	Kibocsátási határérték kritérium ($\mathrm{Bq} / \mathrm{év}$)
I-125	2,7E+11	$4,90 \mathrm{E}+09$	1,22E+09	4,51E-03
I-131	$4,69 \mathrm{E}+11$	$7,00 \mathrm{E}+09$	1,80E+09	3,85E-03
H-3 „A" szint.	$8,30 \mathrm{E}+14$		$0,00 \mathrm{E}+00$	0
C-14 „A" szint.	$7,70 \mathrm{E}+12$	7,70E+08	0,00E+00	0
Kibocsátási határérték kritérium összesen				8,36E-03

7-13. táblázat
Légnemú kibocsátás XXI/B épület „B" és "C" szintű laboratóriumaiból 2016-ban

Radionuklid	Éves kibocsátási határérték (Bq)	Tervezett kibocsátás $(\mathrm{Bq} /$ év)	Ténylegesen kibocsátott érték (Bq)	Kibocsátási határérték kritérium $(\mathrm{Bq} /$ év
$\mathrm{I}-125$	$4,00 \mathrm{E}+09$	$3,00 \mathrm{E}+08$	$2,51 \mathrm{E}+08$	$6,26 \mathrm{E}-02$

7-14. táblázat
Légnemủ kibocsátás XXI/A épület „B" és „C" szintű laboratóriumaiból 2016-ban

Radionuklid	Éves kibocsátási határérték (Bq)	Tervezett kibocsátás $(\mathbf{B q / e ́ v})$	Ténylegesen kibocsátott érték (Bq)	Kibocsátási határérték kritérium $(\mathbf{B q} / \mathbf{e ́ v}$
$\mathrm{H}-3$	$2,00 \mathrm{E}+13$	$2,00 \mathrm{E}+09$	0	0
$\mathrm{C}-14$	$6,00 \mathrm{E}+11$	$9,00 \mathrm{E}+10$	$9,50 \mathrm{E}+10$	$1,58 \mathrm{E}-01$

Az Izotóp Intézet kft. összesített kibocsátási mutatója 2016-ban 0,24 volt.

8 Létesítmények hatásának értékelése, a lakossági sugárterhelés járulékai

8.1 A Paksi Atomerömü

A 16/2000. (VI. 8.) EüM rendelet elöírta, hogy a kiemelt létesítmények esetén a közelben élỏ lakosságra - az 1 mSv éves lakossági dóziskorláton belül - dózismegszorítást kell érvényesíteni. Ennek értékét az Országos Tisztifőorvosi Hivatal (OTH) határozta meg. A PAE telephelyére az OTH a 40-6/1998. sz. állásfoglalásában $100 \mu \mathrm{~Sv} /$ év dózismegszorítást állapított meg, amelyből $90 \mu \mathrm{~Sv}$ vonatkozik az erőműre. A 15/2001. (VI. 6.) KöM rendelet szerint ezen értékböl kiindulva kell a kibocsátási határértékeket is származtatni.

A fenti állásfoglalás egyúttal meghatározta a lakosság vonatkoztatási csoportját is: 1-5 éves gyermekek hipotetikus csoportja, a légköri kibocsátásokat tekintve csámpai, a vízi kibocsátások vonatkozásában gerjeni lakóhellyel. Tekintettel arra, hogy a dózistényezőket stb. tekintve ez az életkori csoport túl tágnak mutatkozott, a számításokat az 1 éves korcsoportra végezik el. (Ez általában és összességében konzervatív megközelitést jelent.)

8.1.1 A légköri kibocsátásból származó sugárterhelés

Az OKI KI SSFO a hatóság által elfogadott légköri és folyékony kibocsátások, az időjárási viszonyok, a fogyasztási szokások stb. alapján számítással határozza meg az erőmű környezetében élő lakosság sugárterhelés járulékát, az 1993. ban kialakított módszertan szerint.

A légköri terjedés számítása során a IAEA, Safety Series No. 57 [15]-ben közölt (IAEA, Safety Reports Series No. 19 [16]-ben módosított) ún. szektorátlagolt Gauss-féle csóvamodellen alapuló eljárást használjuk. A nemzetközi ajánlásokon alapuló, a világ sok országában összegyűlt tapasztalatokat egyesitő, a rutinszerủ gyakorlat számára egyszerűen használható eljárást alkalmaztunk. A módszer hosszú időre (pl. 1 évre) állandó átlagos légköri viszonyokat feltételez a forrás közelében. Ez alapján a talajfelszin felett kialakuló nuklidkoncentrációt illetve a talajfelsziní depozíciót is meghatározzák.

A szárazföldi tápláléklánc egyes komponensei szennyeződésésének leírása az un. koncentráció-faktor technikán alapul [15]. A növényzet szennyezettségének leírásakor a modell figyelembe veszi a növényzet felületére történő külső depozícióból illetve a hosszú felezési idejú izotópok esetén azok gyökérzeten keresztüli felszívódását is. Az állati termékek szennyezettségének becslésekor a modell erősen konzervatív, mivel a felhasznált takarmány kizárólag a helyben termett, szennyezett növényekből kerül ki. A koncentrációfaktorok a nemzetközi szakirodalomból származnak [15,16], míg a növényekre és állatokra vonatkozó paramétereket magyarországi mezögazdasági adatokból határozzák meg meg.

A környezeti elemekben kialakuló aktivitáskoncentrációk alapján a sugárterhelés számítása során a külső bemerülési dózisok, a talajfelszíni gamma dózis, a belégzésből származó dózis és az élelmiszerek lenyeléséből származó dózis mellett figyelembe veszik a reszuszpenzióból származó dózisokat és a leányelemek hatását is.

Az üzemi kibocsátásokra vonatkozó számítások szerint a jelentősebb radionuklidokra a vonatkoztatási csoport lakóhelyén (Csámpa, 1200 m , NY-DNY irány) a talajfelszíni levegőben $47 \mathrm{mBq} / \mathrm{m}^{3}{ }^{41} \mathrm{Ar}$-koncentráció; $0,032 \mu \mathrm{~Bq} / \mathrm{m} 3{ }^{60} \mathrm{Co}$, valamint $19 \mathrm{mBq} / \mathrm{m}^{3}{ }^{3} \mathrm{H}$ (HTO) és $0,11 \mathrm{mBq} / \mathrm{m}^{3}{ }^{14} \mathrm{C}\left(\mathrm{CO}_{2}\right)$ koncentráció alakul ki. Ezek az értékek hasonlóak a korábbi évek koncentrációihoz. A légköri depozíció következtében a ${ }^{60} \mathrm{Co}$ talajfelszíni kiülepedése $8,04 \mathrm{mBq} / \mathrm{m}^{2}$, a leveles zöldség aktivitáskoncentrációja (nedves tömegre) 0,048 $\mathrm{mBq} / \mathrm{kg}$, a tehéntejé $0,024 \mathrm{mBq} / \mathrm{l}$, a húsé $0,27 \mathrm{mBq} / \mathrm{kg}$, a gabonáé pedig $0,16 \mathrm{mBq} / \mathrm{kg}$ értékre becsülhető, ezek az értékek a tavalyinál kissé alacsonyabbak. Az üzem a ${ }^{3} \mathrm{H}$ és ${ }^{14} \mathrm{C}$ radionuklidok és a radiojódok kémiai formáját is meghatározta, ezeket a számításokban figyelembe vettük. İgy pl. az erőmú ${ }^{14} \mathrm{C}$ kibocsátásának $3,5 \%$-a széndioxid formájú, a többi szerves vegyület, azonban az élelmiszerfogyasztásból eredő belső sugárterhelés kialakulásában csupán az előbbi játszik szerepet.

A kibocsátásokból (7-1. táblázat) a vonatkoztatási csoportra számított egyéni effektív dózisok - a szóbajöhető radionuklidok és fizikai, kémiai formák esetén - az egyes besugárzási útvonalak szerinti bontásban az 8-1. táblázatban láthatóak. Az eredmények Csámpára (1,2 km-es távolság, NY-DNY irány) vonatkoznak.

A normál üzemi légköri kibocsátásokból származó lekötött dózis a lakosság kritikus csoportjára 78 nSv , ami a korábbi évekhez hasonlóan magasabb az üzem által számolt 5 nSv nél, az eltérés nagysága a modellszámítások bizonytalanságát - ami mintegy két nagyságrendnél nem kisebb - figyelembe véve elfogadható.

A lakosság kritikus csoportjának a hatóság által számított számított dózisa valamivel alacsonyabb a tavalyinál, és a sokévi átlagtól nem tér el lényegesen.

8-1. táblázat
A normál üzemi légköri kibocsátásokból számolt átlagos egyẻni effektív sugárterhelés a vonatkoztatási csoportra (Csámpa, 1 éves korcsoport, 1200 m , NY-DNY irány)

Izotóp	Éves sugárterhelés (nSv)			
	Külső Be			Belső
	felhőből	talajfelszín	belégzés	élelmiszerfogyasztás
nemesgázok:				
Ar-41	36	*	*	*
Kr-85	*	*	*	*
Kr-85m	0,72	*	*	*
$\mathrm{Kr}-87$	2,5	*	*	*
Kr -88	7,1	0,061	0,098	*
Xe-133	0,16	*	*	*
Xe-135	1,5	*	*	*
aeroszol:				
Mn-54	*	0,017	*	0,002
Co-58	*	*	*	0,010
Fe-59	*	*	*	0,050
Co-60	*	0,21	*	0,39
Zn -65	*	0,020	*	0,24
Se-75	*	*	*	0,039
Sr-89+Sr-90	*	*	*	0,10
$\mathrm{Nb}-95$	*	*	*	0,013
Zr-95	*	0,011	*	0,014
Ru-106	*	0,017	*	0,38
Ag-110m	*	0,14	*	0,55
Sb-124	*	0,012	*	0,037
Sb-125	*	0,018	*	0,042
Cs-134	*	0,025	*	0,12
Cs-137	*	0,074	*	0,62
Ba-140	*	*	*	0,022
Ce-144	*	0,017	*	0,61
Eu-154	*	0,023	*	0,028
egyéb	$<0,10$	<0,10	<0,10	<0,10
radiojódok:				
I-131 (aeroszol)	*	*	*	0,094
I-131 (elemi)	*	*	*	0,65
I-131 (szerves)	*	*	*	0,012
globális:				
C-14	*	*	4,3	16
H-3	*	*	0,68	4,2
Összesen	48	0,69	5,1	24
Teljes járulék a légköri kibocsátásból: $\quad 78 \mathbf{~ S S v}$				

* a becsült dózis $<0,01 \mathrm{nSv}$

8.1.2 A vízi kibocsátásból származó sugárterhelés

A vizzel kibocsátott radioaktív szennyeződés a Dunába jut. A Duna vizének hasznosítása során az abban található radioaktív anyagok külsỏ és belső sugárterhelést okoznak. A számításoknál használt modell alapvetỏ kiindulási pontjait, közelítéseit, paramétereit az 1993. évi jelentés 2. melléklete tartalmazta. Ezt a modellt a Nemzetközi Atomenergia Ügynökség ajánlásának megfelelöen a 2000 -es évek elején átdolgoztuk, elsősorban a Safety Reports Series No. 19 [16] kiadvány módosításainak megfelelően.

A fenti közelítésekkel és kiinduló adatokkal meghatározott, az atomerőmű által a Dunába kibocsátott radioaktív izotópoktól (7-2. táblázat) származó egyéni sugárterheléseket a gerjeni lakosságra (1 éves gyermekek mint vonatkoztatási csoport; továbbá felnőttek) a 8-2. táblázat tartalmazza.

8-2. táblázat
Az atomerőmű normál üzemi éves folyékony radioaktív kibocsátásaiból származó belső és külső dózisok a gerjeni lakosság 1 éves gyermek és felnőtt csoportjára, 2016

Radionuklid	Dózis (nSv/év)			
	1 éves gyermek		felnőtt	
	külső	belsỏ	külsö	belso
H-3	*	25	*	24
C-14	*	11	*	23
Mn-54	0,050	0,11	0,050	0,040
Fe-59	0,020	0,024	0,020	*
Co-58	0,019	0,015	0,019	*
Co-60	0,17	0,40	0,17	0,079
Sr-90	*	0,11	*	0,049
Zr -95	*	*	*	*
Ru-103	*	*	*	*
Ag-110m	*	0,026	*	*
Sb-124	*	0,036	*	*
I-131	*	0,16	*	0,029
Cs-134	0,017	0,25	0,017	0,63
Cs-137	0,033	0,67	0,033	1,6
Ba-140	*	0,019	*	*
Ce-144	*	0,26	*	0,033
Pu-csoport	*	0,056	*	0,036
Am-csoport	*	0,024	*	0,014
egyéb	$<0,1$	$<0,1$	$<0,1$	$<0,1$
Összesen	0,32	38	0,32	44
Mindösszesen	38		45	

* a becsült dózis $<0,01 \mathrm{nSv}$

A 2016. évi sugárterhelés valamivel alacsonyabb a 2015. évinél. A táblázat adataiból látható, hogy a sugárterhelés túlnyomó részét adó ${ }^{3} \mathrm{H}$ izotóp mellett - különösen a felnőtteknél - megjelenik a ${ }^{14} \mathrm{C}$ izotóp is, mint kritikus radionuklid. A belső sugárterhelés járuléka több, mint 2 nagyságrenddel nagyobb a külsőnél.

Az eredmények szerint az aktuális kibocsátásösszetétel és modellparaméterek mellett a felnőttek sugárterhelése hasonló az 1 éves gyermekekéhez (az utóbbi a vonatkoztatási csoport). A számolt értékek elég jól egyeznek a PAE által becsült dózisokkal (60 ill. 65 nSv), azoknál valamivel alacsonyabbak.

8.1.3 Az atomerőművi kibocsátások összefoglaló értékelése

Az üzem 2016. évi légköri kibocsátásai azt mutatták, hogy az erőmű a korábbi évekhez hasonlóan kedvezỏ környezeti sugárvédelmi paraméterekkel üzemelt. A kibocsátások mérésére szolgáló rendszerek folyamatosan működtek.

A vízelvezető csatornákban végzett összes béta és tríciummérések eredményei igazolják, hogy az atomerőműből a Dunába vezetett radioaktív szennyezés (koncentráció) jelentéktelen, erőműi eredetű radionuklid csak a szennyvíz (V3) csatornában detektálható.

A környezeti ellenőrzések során a levegőben és a többi vizsgált környezeti komponensben sem mutatható ki bizonyíthatóan az atomerőműből származó radionuklid.

Az éves folyékony és légköri kibocsátásból néhányszoros bizonytalansággal becsült dózisok összege az erőmủ közelében élő lakosság vonatkoztatási csoportjára $116 \mathrm{nSv}(8-1 ., 8$ 2. és 8-3. táblázatok). miközben a természetes háttér éves hazai értéke 3 mSv felett van [11] és az erôműre vonatkozó hatósági dóziskorlát $90 \mu \mathrm{~Sv}$.

Azaz az erőmű közelében élő lakosság sugárterhelése a dózismegszorítás ezrelékének vehető.

2016-ban a vonatkoztatási csoportra becsült dózis - a 2003. évi üzemzavari légköri kibocsátások hatásának elmúltával - a 2002 előtti évekéhez hasonló volt.

Az erőmű 30 km sugarú - légköri kibocsátásban érintett - térségében 210 ezer ember él, míg a vízi kibocsátásban érintett lakosság 20 ezer főnek vehető. Az erőmű légnemű és folyékony kibocsátásaiból származó, az átlagos egyéni dózisértékek alapján számított kollektív dózis 1,2 személy-mSv volt.

8-3. táblázat

Az éves kibocsátásokból becsült egyéni dózisok a lakosság vonatkoztatási csoportjára, besugárzási útvonalak szerint

Besugárzási útvonal	becsült érték	korlát
	(nSv)	
Légköri kibocsátás		
külső sugárterhelés:		
nemesgáz izotópok	48	
radiokobalt aeroszol	0,21	
radiocézium aeroszol	0,10	
radioezüst aeroszol	0,14	
egyéb izotóp	0,2	
belső sugárterhelés:		
inhaláció	5,1	
radiojód (élelm.)	0,80	
radiokobalt (élelm)	0,40	
radiocézium (élelm.)	0,74	
radioezüst (élelm.)	0,55	
globális szennyezők (H-3, C-14) (élelm.)	20	
egyéb izotóp	1,5	
Összes légköri:	78	
Folyékony kibocsátás		
külső sugárterhelés:	0,32	
belső sugárterhelés:		
trícium	25	
radiokarbon	11	
egyéb izotóp	1,5	
Összes folyékony:	38	
Mindösszesen:	116	90000

8.2 Egyéb kiemelt létesítmények

Az NRHT, az RHFT, a Kutatóreaktor, az Oktatóreaktor és az Izotóp Intézet Kft esetében a hatóság által végzett, a lakosság sugártehelésének - környezeti méréseken alapuló becslésére vonatkozó módszertan kialakítás alatt van, a 2016. január 1.-jén hatályba lépett 487/2015 Korm. rendelet 64. §.-ban foglalt rendlekezések alapján.

A módszertan kialakításig a lakosság sugárterhelése becsülhetỏ a tényleges kibocsátások és a - dózismegszorításból származtatott - kibocsátási korlátok hányadosából képzett határérték kihasználás, valamint a dózismegszorítás aránya alapján.

A kiemelt létesítmények környezetében élőknek a létesítmény üzemeltetéséből származó becsült sugárterhelését a $8-4$. táblázat mutatja be.

8-4. táblázat
Az éves kibocsátásokból becsült egyéni dózisok a lakosság vonatkoztatási csoportjára, besugárzási útvonalak szerint

Létesítmény	Határérték kihasználás	Dózsimegszorítás [nSv]	Becsült sugárterhelés [nSv]
NRHT	Légköri: $5,09 \mathrm{E}-02$ Folyékony: $6,04 \mathrm{E}-02$	$\mathbf{1 0 0 0 0 0}$	$\mathbf{1 1 2}$
RHFT	Légköri: 0,243 Folyékony: 0,009	$\mathbf{1 0 0} 000$	$\mathbf{2 5 2}$
Kutatóreaktor	Légköri: 0,021 Folyékony: 0	$\mathbf{5 0 0 0 0}$	$\mathbf{9 4}$
Oktatóreaktor	Légköri: $1,86 \mathrm{E}-3$ Folyékony: $1,1 \mathrm{E}-5$	$\mathbf{5 0 0 0 0}$	$\mathbf{1 1 8 2 6}$
Izotóp Intézet Kft.	Légköri: 0,229 Folyékony: $7,55 \mathrm{E}-03$	$\mathbf{5 0 0 0 0}$	050

Következtetések

Hangsúlyozni kell, hogy míg az Európai Unió rendelete szerint \{Post-Chernobyl 733/2008/EC, Council Regulation No 733/2008 of 15 July 2008 on the conditions governing imports of agricultural products originating in third countries following the accident at the Chernobyl nuclear power station (codified version); Council Regulation (EC) No 1048/2009 extends its validity until 31 March 2020) (OJ L-201 of 30/07/2008, page 1)\} az élelmiszerekben a ${ }^{134} \mathrm{Cs}$ és ${ }^{137} \mathrm{Cs}$ radionuklidok megengedhető együttes legnagyobb szintje $600 \mathrm{~Bq} / \mathrm{kg}$ (tejben, tejtermékekben és csecsemőélelmiszerben $370 \mathrm{~Bq} / \mathrm{kg}$), addig a Magyarországon kapható, feldolgozott élelmiszerekben a 2016-ban mért legnagyobb értékek is $10 \mathrm{~Bq} / \mathrm{kg}$ alatt maradtak.

A lakosság mesterséges forrásokból származó sugárterhelése - az orvosi célú alkalmazásokon kívül - hazánkban az utóbbi években 3-6 $\mu \mathrm{Sv}$ közöttire becsülhető, míg a természetes eredetủ sugárterhelés ennél közel három nagyságrenddel nagyobb.

Összefoglalásul megállapíthatjuk, hogy mind az országos, mind a létesítményi környezet-ellenőrzés során kapott eredmények szerint az engedélyhez kötött tevékenységeknek a környezetre illetve lakosságra gyakorolt hatása elhanyagolható, a radioaktív izotópok aktivitáskoncentráció értékei több mintafajtánál is túlnyomórészt kimutatási határ alatt maradnak.

Conclusion

It should be emphasized that the activity concentration of radiocaesium concentrations remained below $10 \mathrm{~Bq} / \mathrm{kg}$ in foodstuffs available in Hungary in 2016. The maximum permitted levels according to the Council Regulation \{Post-Chernobyl 733/2008/EC, Council Regulation No 733/2008 of 15 July 2008 on the conditions governing imports of agricultural products originating in third countries following the accident at the Chernobyl nuclear power station (codified version); Council Regulation (EC) No 1048/2009 extends its validity until 31 March 2020) (OJ L-201 of 30/07/2008, page 1) \} on the conditions governing imports of agricultural products originating in third countries following the accident at the Chernobyl nuclear power-station are $600 \mathrm{~Bq} / \mathrm{kg}$ in general and $370 \mathrm{~Bq} / \mathrm{kg}$ for milk, milk products and infant foods, for the sum of ${ }^{137} \mathrm{Cs}$ and ${ }^{134} \mathrm{Cs}$.

The annual dose of the Hungarian population due to artificial radiation sources - excluding the exposure due to the medical applications - was about $3-6 \mu \mathrm{~Sv}$ in the last years, while the natural radiation burden is higher by nearly 3 orders of magnitude.

It can be concluded that the environmental monitoring results indicated very low radiological effect of licensed activities on the environment and negligible population doses, many measurement results were even below the detection limits.

Irodalom, hivatkozott jogszabályok

[1] 1996. évi CXVI. törvény az atomenergiáról
[2] 489/2015. (XII. 30.) Korm. rendelet a lakosság természetes és mesterséges eredetủ sugárterhelését meghatározó környezeti sugárzási helyzet ellenőrzési rendjéről és a kötelezően mérendő mennyiségek köréről
[3] 15/2001. (VI. 6.) KöM rendelet az atomenergia alkalmazása során a levegőbe és vizbe történő radioaktív kibocsátásokról és azok ellenőrzéséről
[4] 487/2015. (XII. 30.) Korm. rendelet az ionizáló sugárzás elleni védelemről és a kapcsolódó engedélyezési, jelentési és ellenőrzési rendszerről
[5] http://www.rttsz.hu/docs/roviden.pdf
[6] A TANÁCS 2013/59/EURATOM IRÁNYELVE (2013. december 5.) az ionizáló sugárzás miatti sugárterhelésből származó veszélyekkel szembeni védelmet szolgáló alapvető biztonsági előírások megállapításáról, valamint a 89/618/Euratom, a 90/641/Euratom, a 96/29/Euratom, a 97/43/Euratom és a 2003/122/Euratom irányelv hatályon kívül helyezéséröl
[7] http://www.rhk.hu/
[8] http://hadmernok.hu/151_15_bujtast_ml_ng_sj.pdf
[9]https://www.haea.gov.hu/web/v3/OAHPortal.nsf/20CFAC350F87228EC12580ED00253B 29/\$File/K\%C3\%B6z\%C3\%A9rthet\%C5\%91\%20\%C3\%B6sszefoglal\%C3\%B3_BME\%202 017_v.pdf
[10] http://www.energia.mta.hu/hu/content/kornyezetvedelmi-szolgalat
[11] http://www.unscear.org/
[12] $8 / 2002$. (III. 12.) EüM rendelet az egészségügyi ágazat radiológiai mérő és adatszolgáltató hálózata felépítéséről és működéséről
[13] A Paksi Atomerőmü Sugár- és Környezetvédelmi Főosztálya 2016. évi jelentése. (Szerk.: Bujtás Tibor) Paks, 2017. március
[14] Sources and Effects of Ionizing Radiation - VOLUME I (United Nations Scientific Committee on the Effects of Atomic Radiation, 2008)
[15] IAEA, Safety Series No. 57 (SS57), 1982
[16] IAEA, Safety Reports Series No. 19 (SRS19), 2001
[17] FZK, GSF 12/90, 1990
[18] NAÜ, Biztonsági Sorozat No. 115 (IBSS115), 1996

Adatszolgáltatásban résztvevő intézmények, szakemberek

A 2016. évi jelentésben szereplő mérési adatokat szolgáltató szervezetekben a mérésekben és adatküldésben részt vett intézmények és szakemberek:

Belügyminisztérium (Országos Katasztrófa védelmi Föigazgatóság)
Az adatszolgáltatásért felelős személy: Szeitz Anita
Az adatküldésben részt vett: Szabados László tủ. őrnagy

Emberi Erőforrások Minisztériuma - Egészségügyi Ágazat (OKI Ki SSFO És ERMAH laboratóriumok)

Az adatszolgáltatásért felelős személy: Glavatszkih Nándor
A mérésekben és adatküldésben rész.t vettek:
OKI KI SSFO: Szabó Gyula, Homoki Zsolt, Dr. Szarkáné Németh Ágnes
Borsod-Abaúj-Zemplén Megyei Kormányhivatal Népegészségügyi Fősosztály: Farkasné Györy Edit
Budapest Főváros Kormányhivatala Népegészségügyi Főosztály: Berenkei Réka
Csongrád Megyei Kormányhivatal Népegészségügyi Fősosztály: Hoványné Kádár Erika
Györ-Moson-Sopron Megyei Kormányhivatal Népegészségügyi Főosztály: Pálvölgyiné Szabó Zsuzsanna
Hajdú-Bihar Megyei Kormányhivatal Népegészségügyi Főosztály: Madarász István
Tolna Megyei Kormányhivatal Népegészségügyi Főosztály: Kerekes Irén

Emberi Eróforrások Minisztériuma - Oktatási Ágazat

Az adatszolgáltatásért felelős személy: Cservenák Ildikó

Földművelésügyi Minisztérium - Földmüvelésügyi Ágazat

Az adatszolgáltatásért felelős személy: Ádámné Sió Tünde
A mérésekben és adatküldésben részt vettek:
Nemzeti Élelmiszer-lánc Biztonsági Hivatal (NÉBIH), Élelmiszer- és
Takarmánybiztonsági Igazgatóság akkreditált laboratóriumai:
Radioanalitikai Referencia Laboratórium (Budapesti telephely, Szekszárdi telephely, Szombathelyi telephely)
Élelmiszerlánc-biztonsági Centrum Nonprofit Kft. Kecskeméti Regionális Élelmiszerlánc Laboratórium
Élelmiszerlánc-biztonsági Centrum Nonprofit Kft. Miskolci Regionális
Élelmiszerlánc Laboratórium
Élelmiszerlánc-biztonsági Centrum Nonprofit Kft. Kaposvári Regionális
Élelmiszerlánc Laboratórium
Élelmiszerlánc-biztonsági Centrum Nonprofit Kft. Veszprémi Regionális
Élelmiszerlánc Laboratórium
Élelmiszerlánc-biztonsági Centrum Nonprofit Kft. Debreceni Regionális Élelmiszerlánc Laboratórium

Földmüvelésügyi Minisztérium - Környezetvédelmi és Vízügyi Ágazat
Megyei Kormányhivatalok, Környezetvédelmi Mérőközpontjai
Az adatszolgáltatásért felelős személy: Lókiné Nagy Enikő
A mérésekben és adatküldésben részt vettek: Alföldi Attila, Erdős József, Gulyásné
Deák Magdolna, Dr. Szécsényi István, Ulrich Zsolt, Weiszenburger Edit
Magyar Tudományos akadémia (MTA Energiatudományı Kutatóközpont)
Az adatszolgáltatásért felelős személy: Zagyvai Péter
A mérésekben és adatküldésben részt vettek: Endrődi Gáborné, Danczák Ákos
MVM Paksi Atomerőmű Zrt. (PA Zrt.)
Az adatszolgáltatásért felelős személy: Daróczi László
A mérésekben és adatküldésben részt vettek: Manga László, Lencsés András, Végh Gábor, Kapás Péter

Radioaktív Hulladékokat Kezelő Közhasznú Nonprofit Kft (PüspöKszilágyı RHFT)

Az adatszolgáltatásért felelős személy: Turza Péter
A mérésekben és adatküldésben részt vettek: Turza Péter, Kirchhofer Beáta, Fekete István
Radioaktív Hulladékokat Kezeló Közhasznú Nonprofit Kft (Bátaapátı nrHT)
Az adatszolgáltatásért felelős személy: Dr. Radó Krisztián
A mérésekben és adatküldésben részt vettek: Dr. Radó Krisztián, László Mónika

Rövidítések jegyzéke

BAMKH - Baranya Megyei Kormányhivatal
BME NTI - Budapesti Műszaki Egyetem Nukleáris Technikai Intézete
EMMI - Emberi Erőforrások Minisztériuma
ERMAH - Egészségügyi Radiológiai Mérő és Adatszolgáltató Hálózat
EüÁ - egészségügyi ágazat
FmÁ - földművelésügyi ágazat
KIESZ - Kibocsátás Ellenőrzési Szabályzat
KÖESZ - Környezet Ellenőrzési Szabályzat
KvVÁ - környezetvédelmi és vízügyi ágazat
NÉBIH - Nemzeti Élelmiszerlánc-biztonsági Hivatal
OÁ - oktatási ágazat
OAH - Országos Atomenergia Hivatal
OKI - Országos Közegészségügyi Intézet
OKI KI SSFO - Országos Közegészségügyi Intézet, Közegészségügyi Igazgatóság, Sugárbiológiai és Sugáregészségügyi Főosztály
OKSER - Országos Környezeti Sugárvédelmi Ellenőrző Rendszer
OSJER - Országos Sugárfigyelő, Jelző és Ellenőrző Rendszer
OMSZ - Országos Meteorológiai Szolgálat
TMH - Távmérő Hálózat

A megyék kódjai

Megye kodja	Megye
BA	Baranya
BE	Békés
BK	Bács-Kiskun
BP	Budapest
BZ	Borsod-Abaúj-Zemplén
CS	Csongrád
FE	Fejér
GY	Györ-Moson-Sopron
HA	Hajdú-Bihar
HE	Heves
JA	Jász-Nagykun-Szolnok
KO	Komárom-Esztergom
NO	Nógrád
PE	Pest
SO	Somogy
SZ	Szabolcs-Szatmár-Bereg
TO	Tolna
VA	Vas
VE	Veszprém
ZA	Zala

[^0]: ${ }^{1}$ Az összes béta-aktivitás a mintában található béta-sugárzó izotópok összes aktivitását jelenti
 ${ }^{2}$ Az összes alfa-aktivitás a mintában talălható alfa-sugárzó izotópok összes aktivitását jelenti

